Displaying 241 – 260 of 508

Showing per page

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Hyperbolic relaxation models for granular flows

Thierry Gallouët, Philippe Helluy, Jean-Marc Hérard, Julien Nussbaum (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we describe an efficient model for the simulation of a two-phase flow made of a gas and a granular solid. The starting point is the two-velocity two-pressure model of Baer and Nunziato [Int. J. Multiph. Flow16 (1986) 861–889]. The model is supplemented by a relaxation source term in order to take into account the pressure equilibrium between the two phases and the granular stress in the solid phase. We show that the relaxation process can be made thermodynamically coherent with an...

Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type

K. Kropielnicka (2008)

Applicationes Mathematicae

Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.

Implicit difference schemes for mixed problems related to parabolic functional differential equations

Milena Netka (2011)

Annales Polonici Mathematici

Solutions of initial boundary value problems for parabolic functional differential equations are approximated by solutions of implicit difference schemes. The existence and uniqueness of approximate solutions is proved. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators. It is shown that the new methods are considerably better than the explicit difference schemes. Numerical examples are presented.

Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

Erik Burman, Alexandre Ern (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...

Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

Erik Burman, Alexandre Ern (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...

Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

Erik Burman, Alexandre Ern (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...

L2 stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods

Yingjie Liu, Chi-Wang Shu, Eitan Tadmor, Mengping Zhang (2008)

ESAIM: Mathematical Modelling and Numerical Analysis


We prove stability and derive error estimates for the recently introduced central discontinuous Galerkin method, in the context of linear hyperbolic equations with possibly discontinuous solutions. A comparison between the central discontinuous Galerkin method and the regular discontinuous Galerkin method in this context is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis.

L2-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes

Serge Piperno (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate sufficient and possibly necessary conditions for the L2 stability of the upwind first order finite volume scheme for Maxwell equations, with metallic and absorbing boundary conditions. We yield a very general sufficient condition, valid for any finite volume partition in two and three space dimensions. We show this condition is necessary for a class of regular meshes in two space dimensions. However, numerical tests show it is not necessary in three space dimensions even on regular...

Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition

Dana Říhová-Škabrahová (2001)

Applications of Mathematics

The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ 1 of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand...

Local Discontinuous Galerkin methods for fractional diffusion equations

W. H. Deng, J. S. Hesthaven (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by β ∈[1, 2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence 𝒪(hk + 1) uniformly across the continuous range between pure advection (β = 1) and pure diffusion...

Currently displaying 241 – 260 of 508