Displaying 401 – 420 of 508

Showing per page

Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles*

C. Pozzolini, M. Salaun (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...

Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles*

C. Pozzolini, M. Salaun (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...

Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method

Abdallah Bradji, Jürgen Fuhrmann (2014)

Mathematica Bohemica

We consider a family of conforming finite element schemes with piecewise polynomial space of degree k in space for solving the wave equation, as a model for second order hyperbolic equations. The discretization in time is performed using the Newmark method. A new a priori estimate is proved. Thanks to this new a priori estimate, it is proved that the convergence order of the error is h k + τ 2 in the discrete norms of ( 0 , T ; 1 ( Ω ) ) and 𝒲 1 , ( 0 , T ; 2 ( Ω ) ) , where h and τ are the mesh size of the spatial and temporal discretization, respectively....

Some remarks concerning stabilization techniques for convection--diffusion problems

Brandner, Marek, Knobloch, Petr (2019)

Programs and Algorithms of Numerical Mathematics

There are many methods and approaches to solving convection--diffusion problems. For those who want to solve such problems the situation is very confusing and it is very difficult to choose the right method. The aim of this short overview is to provide basic guidelines and to mention the common features of different methods. We place particular emphasis on the concept of linear and non-linear stabilization and its implementation within different approaches.

Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems

Miloslav Feistauer, Jaroslav Hájek, Karel Švadlenka (2007)

Applications of Mathematics

The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees p and q in space and time discretization, respectively. In the space discretization the nonsymmetric interior...

Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

David J. Knezevic, Endre Süli (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to + along the boundary D of the computational domain D . Using a symmetrization...

Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

David J. Knezevic, Endre Süli (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along the boundary ∂D of the computational domain D. Using a symmetrization...

Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation

Cyril Agut, Julien Diaz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap–Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.

Stability analysis of the space-time discontinuous Galerkin method for nonstationary nonlinear convection-diffusion problems

Balázsová, Monika, Feistauer, Miloslav, Hadrava, Martin, Kosík, Adam (2015)

Programs and Algorithms of Numerical Mathematics

This paper is concerned with the stability analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method. Theoretical...

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová, Karol Mikula (2008)

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model

Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze two numerical schemes of Euler type in time and C0 finite-element type with 1 -approximation in space for solving a phase-field model of a binary alloy with thermal properties. This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute concentration and temperature, where the diffusion for the temperature and solute concentration may degenerate. The first scheme is nonlinear, unconditionally stable and convergent. The other scheme is linear...

Currently displaying 401 – 420 of 508