The search session has expired. Please query the service again.
Displaying 901 –
920 of
2633
This article is divided into two chapters. The
classical problem of homogenization of elliptic operators with
periodically oscillating coefficients is revisited in the
first chapter. Following a Fourier approach, we discuss some
of the basic issues of the subject: main convergence theorem,
Bloch approximation, estimates on second order derivatives,
correctors for the medium, and so on. The second chapter is
devoted to the discussion of some non-classical behaviour of
vibration problems of periodic...
It is shown, in the context of the Thermomechanics of simple materials with memory, that frame indifference and, equivalently, rotation invariance are necessary consequences of the laws of classical Mechanics and the definition of the stress matrix and heat flux vector.
In connection with the determination of the free energy functional for the viscoelastic stress tensor, a viscoelastic material is considered as described by a material with internal variables. In this framework the free energy is uniquely determined. It proves to be the minimal one in the class of thermodynamically admissible free energies.
In the paper, we deal with the equation of a rectangular thin plate with a simply supported boundary. The restoring force being an odd superlinear function of the vertical displacement, the existence of infinitely many nonzero time-periodic solutions is proved.
The purpose of this paper is to derive and study a new asymptotic
model for the equilibrium state of a thin anisotropic
piezoelectric plate in frictional contact with a rigid obstacle.
In the asymptotic process, the thickness of the piezoelectric
plate is driven to zero and the convergence of the unknowns is
studied. This leads to two-dimensional Kirchhoff-Love plate
equations, in which mechanical displacement and electric potential
are partly decoupled. Based on this model numerical examples are
presented...
The paper deals with the problem of quasistatic frictionless contact between an elastic body and a foundation. The elasticity operator is assumed to vanish for zero strain, to be Lipschitz continuous and strictly monotone with respect to the strain as well as Lebesgue measurable on the domain occupied by the body. The contact is modelled by normal compliance in such a way that the penetration is limited and restricted to unilateral contraints. In this problem we take into account adhesion which...
We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants...
We characterize the general solutions to certain symmetric systems of linear partial differential equations with tensor functionals as unknowns. Then we determine the solutions that are physically meaningful in suitable senses related with the constitutive functionals of two simple thermodynamic bodies with fading memory that are globally equivalent, i.e. roughly speaking that behave in the same way along processes not involving cuts. The domains of the constitutive functionals are nowhere dense...
The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.
The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.
The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...
Currently displaying 901 –
920 of
2633