Displaying 921 – 940 of 2623

Showing per page

Generalized Newton methods for the 2D-Signorini contact problem with friction in function space

Karl Kunisch, Georg Stadler (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented lagrangians allows to apply an infinite-dimensional...

Generalized Newton methods for the 2D-Signorini contact problem with friction in function space

Karl Kunisch, Georg Stadler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented Lagrangians allows to apply an...

Geometrically nonlinear shape-memory polycrystals made from a two-variant material

Robert V. Kohn, Barbara Niethammer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Bhattacharya and Kohn have used small-strain (geometrically linear) elasticity to analyze the recoverable strains of shape-memory polycrystals. The adequacy of small-strain theory is open to question, however, since some shape-memory materials recover as much as 10 percent strain. This paper provides the first progress toward an analogous geometrically nonlinear theory. We consider a model problem, involving polycrystals made from a two-variant elastic material in two space dimensions. The linear theory...

Geometry of the free-sliding Bernoulli beam

Giovanni Moreno, Monika Ewa Stypa (2016)

Communications in Mathematics

If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application,...

Global asymptotic stabilisation of an active mass damper for a flexible beam

Laura Menini, Antonio Tornambè, Luca Zaccarian (1999)

Kybernetika

In this paper, a finite dimensional approximated model of a mechanical system constituted by a vertical heavy flexible beam with lumped masses placed along the beam and a mobile mass located at the tip, is proposed; such a model is parametric in the approximation order, so that a prescribed accuracy in the representation of the actual system can be easily obtained with the proposed model. The system itself can be understood as a simple representation of a building subject to transverse vibrations,...

Global existence and energy decay of solutions to a Bresse system with delay terms

Abbes Benaissa, Mostefa Miloudi, Mokhtar Mokhtari (2015)

Commentationes Mathematicae Universitatis Carolinae

We consider the Bresse system in bounded domain with delay terms in the internal feedbacks and prove the global existence of its solutions in Sobolev spaces by means of semigroup theory under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method.

Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping

Abderrahmane Zaraï, Nasser-eddine Tatar (2010)

Archivum Mathematicum

A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].

Currently displaying 921 – 940 of 2623