Displaying 101 – 120 of 131

Showing per page

Convergence of an equilibrium finite element model for plane elastostatics

Ivan Hlaváček (1979)

Aplikace matematiky

An equilibrium triangular block-element, proposed by Watwood and Hartz, is subjected to an analysis and its approximability property is proved. If the solution is regular enough, a quasi-optimal error estimate follows for the dual approximation to the mixed boundary value problem of elasticity (based on Castigliano's principle). The convergence is proved even in a general case, when the solution is not regular.

Convergence of dual finite element approximations for unilateral boundary value problems

Ivan Hlaváček (1980)

Aplikace matematiky

A semi-coercive problem with unilateral boundary conditions of the Signoriti type in a convex polygonal domain is solved on the basis of a dual variational approach. Whereas some strong regularity of the solution has been assumed in the previous author’s results on error estimates, no assumption of this kind is imposed here and still the L 2 -convergence is proved.

Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary

Farshid Dabaghi, Adrien Petrov, Jérôme Pousin, Yves Renard (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.

Convergence of the finite element method applied to an anisotropic phase-field model

Erik Burman, Daniel Kessler, Jacques Rappaz (2004)

Annales mathématiques Blaise Pascal

We formulate a finite element method for the computation of solutions to an anisotropic phase-field model for a binary alloy. Convergence is proved in the H 1 -norm. The convergence result holds for anisotropy below a certain threshold value. We present some numerical experiments verifying the theoretical results. For anisotropy below the threshold value we observe optimal order convergence, whereas in the case where the anisotropy is strong the numerical solution to the phase-field equation does not...

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition

Eliane Bécache, Jeronimo Rodríguez, Chrysoula Tsogka (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly...

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition

Eliane Bécache, Jeronimo Rodríguez, Chrysoula Tsogka (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always...

Convergenza per l'equazione degli integrali primi associata al problema del rimbalzo

Michele Carriero, Antonio Leaci, Eduardo Pascali (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we present a few results on convergence for the prime integrals equations connected with the bounce problem. This approach allows both to prove uniqueness for the one-dimensional bounce problem for almost all permissible Cauchy data (see also [6]) and to deepen previous results (see [3], [5], [7]).

Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation

Clément Mouhot, Lorenzo Pareschi, Thomas Rey (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of...

Correctors and field fluctuations for the pϵ(x)-laplacian with rough exponents : The sublinear growth case

Silvia Jimenez (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A corrector theory for the strong approximation of gradient fields inside periodic composites made from two materials with different power law behavior is provided. Each material component has a distinctly different exponent appearing in the constitutive law relating gradient to flux. The correctors are used to develop bounds on the local singularity strength for gradient fields inside micro-structured media. The bounds are multi-scale in nature and can be used to measure the amplification of applied...

Counting number of cells and cell segmentation using advection-diffusion equations

Peter Frolkovič, Karol Mikula, Nadine Peyriéras, Alex Sarti (2007)

Kybernetika

We develop a method for counting number of cells and extraction of approximate cell centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The approximate cell centers give us the starting points for the subjective surface based cell segmentation. We move in the inner normal direction all level sets of nuclei and membranes images by a constant speed with slight regularization of this flow by the (mean) curvature. Such multi- scale evolutionary process is represented by a geometrical...

Currently displaying 101 – 120 of 131