Previous Page 7

Displaying 121 – 131 of 131

Showing per page

Coupled string-beam equations as a model of suspension bridges

Pavel Drábek, Herbert Leinfelder, Gabriela Tajčová (1999)

Applications of Mathematics

We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.

Crack in a solid under Coulomb friction law

Victor A. Kovtunenko (2000)

Applications of Mathematics

An equilibrium problem for a solid with a crack is considered. We assume that both the Coulomb friction law and a nonpenetration condition hold at the crack faces. The problem is formulated as a quasi-variational inequality. Existence of a solution is proved, and a complete system of boundary conditions fulfilled at the crack surface is obtained in suitable spaces.

Curl bounds grad on SO(3)

Ingo Münch, Patrizio Neff (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461–1506; John, Comme Pure Appl. Math. 14 (1961) 391–413; Reshetnyak, Siberian Math. J. 8 (1967) 631–653)] as well as an associated linearized theorem...

Curl bounds Grad on SO(3)

Patrizio Neff, Ingo Münch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying...

Curved composite beam with interlayer slip loaded by radial load

István Ecsedi, Ákos József Lengyel (2015)

Curved and Layered Structures

Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the flexible shear connection is a linear relationship. The curved composite beam at one of the end cross sections is fixed and the other end cross section is subjected by a concentrated radial load. Two cases are considered. In the first case the loaded end cross section is closed by a rigid plate...

Currently displaying 121 – 131 of 131

Previous Page 7