The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
112
The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown to have a solution...
The aim of this paper is to analyze a low order finite element method
for a stiffened plate. The plate is modeled by Reissner-Mindlin
equations and the stiffener by Timoshenko beams equations. The
resulting problem is shown to be well posed. In the case of concentric
stiffeners it decouples into two problems, one for the in-plane plate
deformation and the other for the bending of the plate. The analysis
and discretization of the first one is straightforward. The second one
is shown to have a solution...
A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various...
The aim of this paper is to develop a finite element method which allows computing
the buckling coefficients and modes of a non-homogeneous Timoshenko beam.
Studying the spectral properties of a non-compact operator,
we show that the relevant buckling coefficients correspond to isolated
eigenvalues of finite multiplicity.
Optimal order error estimates are proved for the eigenfunctions
as well as a double order of convergence for
the eigenvalues using classical abstract spectral approximation theory...
The aim of this paper is to develop a finite element method which allows computing
the buckling coefficients and modes of a non-homogeneous Timoshenko beam.
Studying the spectral properties of a non-compact operator,
we show that the relevant buckling coefficients correspond to isolated
eigenvalues of finite multiplicity.
Optimal order error estimates are proved for the eigenfunctions
as well as a double order of convergence for
the eigenvalues using classical abstract spectral approximation theory...
A Mimetic Discretization method for the linear elasticity problem
in mixed weakly symmetric form is developed. The scheme is shown to
converge linearly in the mesh size, independently of the
incompressibility parameter λ, provided the discrete scalar
product satisfies two given conditions. Finally, a family of
algebraic scalar products which respect the above conditions is
detailed.
A unilateral problem of an elastic plate above a rigid interior obstacle is solved on the basis of a mixed variational inequality formulation. Using the saddle point theory and the Herrmann-Johnson scheme for a simultaneous computation of deflections and moments, an iterative procedure is proposed, each step of which consists in a linear plate problem. The existence, uniqueness and some convergence analysis is presented.
A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error...
A modal synthesis method to solve the elastoacoustic vibration problem
is analyzed. A two-dimensional coupled fluid-solid system is considered;
the solid is described by displacement variables, whereas displacement
potential is used for the fluid. A particular modal synthesis leading to
a symmetric eigenvalue problem is introduced. Finite element discretizations
with Lagrangian elements are considered for solving the uncoupled problems.
Convergence for eigenvalues and eigenfunctions is proved,...
Currently displaying 21 –
40 of
112