The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
110
It was shown recently by Córdoba, Faraco and Gancedo in [1] that the 2D porous media equation admits weak solutions with compact support in time. The proof, based on the convex integration framework developed for the incompressible Euler equations in [4], uses ideas from the theory of laminates, in particular configurations. In this note we calculate the explicit relaxation of IPM, thus avoiding configurations. We then use this to construct weak solutions to the unstable interface problem (the...
We show that it is possible to construct a class of entropic schemes for the multicomponent Euler system describing a gas or fluid homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A first order Chapman–Enskog expansion shows that the relaxed system formally converges when the relaxation frequencies go to the infinity toward a multicomponent Navier–Stokes system with the classical Fick and Newton laws, with a thermal diffusion which can be assimilated to a Soret...
We show that it is possible to construct a class of entropic
schemes for the multicomponent Euler system describing a gas or fluid
homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A
first order Chapman–Enskog expansion shows that the relaxed system
formally converges when the relaxation frequencies go to the infinity
toward a multicomponent Navier–Stokes system with the classical Fick and
Newton laws, with a thermal diffusion which can be assimilated to a Soret...
This paper is concerned with the global well-posedness and relaxation-time limits for the solutions in the full quantum hydrodynamic model, which can be used to analyze the thermal and quantum influences on the transport of carriers in semiconductor devices. For the Cauchy problem in , we prove the global existence, uniqueness and exponential decay estimate of smooth solutions, when the initial data are small perturbations of an equilibrium state. Moreover, we show that the solutions converge into...
J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.
Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space are regular.
We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of (1 < β < ∞) weights, we establish regularity criteria involving , or in some weighted Lebesgue spaces. This improves many previous results.
We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that
By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing , and on different hollow cylinders, we are able to improve it and obtain
We study the Cauchy problem for the MHD system, and provide two regularity conditions involving horizontal components (or their gradients) in Besov spaces. This improves previous results.
This article recalls the results given by A. Dutrifoy, A. Majda and S. Schochet in [1] in which they prove an uniform estimate of the system as well as the convergence to a global solution of the long wave equations as the Froud number tends to zero. Then, we will prove the convergence with weaker hypothesis and show that the life span of the solutions tends to infinity as the Froud number tends to zero.
Currently displaying 61 –
80 of
110