Displaying 1021 – 1040 of 3470

Showing per page

Finite element solution of flows through cascades of profiles in a layer of variable thickness

Miloslav Feistauer, Jiří Felcman, Zdeněk Vlášek (1986)

Aplikace matematiky

The paper is devoted to the numerical modelling of a subsonic irrotational nonviscous flow past a cascade of profiles in a variable thickness fluid layer. It leads to a nonlinear two-dimensional elliptic problem with nonstandard nonhomogeneous boundary conditions. The problem is discretized by the finite element method. Both theoretical and practical questions of the finite element implementation are studied; convergence of the method, numerical integration, iterative methods for the solution of...

Finite volume method in curvilinear coordinates for hyperbolic conservation laws⋆

A. Bonnement, T. Fajraoui, H. Guillard, M. Martin, A. Mouton, B. Nkonga, A. Sangam (2011)

ESAIM: Proceedings

This paper deals with the design of finite volume approximation of hyperbolic conservation laws in curvilinear coordinates. Such coordinates are encountered naturally in many problems as for instance in the analysis of a large number of models coming from magnetic confinement fusion in tokamaks. In this paper we derive a new finite volume method for hyperbolic conservation laws in curvilinear coordinates. The method is first described in a general...

Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis

Claire Chainais-Hillairet, Jian-Guo Liu, Yue-Jun Peng (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal...

Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis

Claire Chainais-Hillairet, Jian-Guo Liu, Yue-Jun Peng (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal...

Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities

Clément Cancès (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a one-dimensional model for two-phase flows in heterogeneous media, in which the capillary pressure functions can be discontinuous with respect to space. We first give a model, leading to a system of degenerated nonlinear parabolic equations spatially coupled by nonlinear transmission conditions. We approximate the solution of our problem thanks to a monotonous finite volume scheme. The convergence of the underlying discrete solution to a weak solution when the discretization step...

Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics

Mária Lukáčová-Medviďová, Jitka Saibertová (2006)

Applications of Mathematics

In this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bicharacteristics...

Finite-dimensionality of 2-D micropolar fluid flow with periodic boundary conditions

Piotr Szopa (2007)

Applicationes Mathematicae

This paper is devoted to proving the finite-dimensionality of a two-dimensional micropolar fluid flow with periodic boundary conditions. We define the notions of determining modes and nodes and estimate their number. We check how the distribution of the forces and moments through modes influences the estimate of the number of determining modes. We also estimate the dimension of the global attractor. Finally, we compare our results with analogous results for the Navier-Stokes equation.

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Currently displaying 1021 – 1040 of 3470