Displaying 1121 – 1140 of 3483

Showing per page

Global existence of solutions for incompressible magnetohydrodynamic equations

Wisam Alame, W. M. Zajączkowski (2004)

Applicationes Mathematicae

Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to W p 2 , 1 ( Ω × ( 0 , T ) ) and the pressure q satisfies q L p ( Ω × ( 0 , T ) ) for p ≥ 7/3.

Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics

Wen Zhang, Jianwen Zhang (2012)

Applications of Mathematics

In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.

Global existence of solutions of the free boundary problem for the equations of magnetohydrodynamic compressible fluid

Piotr Kacprzyk (2005)

Banach Center Publications

Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.

Global existence of solutions to Navier-Stokes equations in cylindrical domains

Bernard Nowakowski, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

We prove the existence of global and regular solutions to the Navier-Stokes equations in cylindrical type domains under boundary slip conditions, where coordinates are chosen so that the x₃-axis is parallel to the axis of the cylinder. Regular solutions have already been obtained on the interval [0,T], where T > 0 is large, on the assumption that the L₂-norms of the third component of the force field, of derivatives of the force field, and of the velocity field with respect to the direction of...

Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials

Elisabetta Rocca, Riccarda Rossi (2008)

Applications of Mathematics

This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a strongly nonlinear internal energy balance equation, governing the evolution of the absolute temperature ϑ , an evolution equation for the phase change parameter χ , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable 𝐮 . The main novelty of the model...

Global in Time Stability of Steady Shocks in Nozzles

Jeffrey Rauch, Chunjing Xie, Zhouping Xin (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

We prove global dynamical stability of steady transonic shock solutions in divergent quasi-one-dimensional nozzles. One of the key improvements compared with previous results is that we assume neither the smallness of the slope of the nozzle nor the weakness of the shock strength. A key ingredient of the proof are the derivation a exponentially decaying energy estimates for a linearized problem.

Global regular nonstationary flow for the Navier-Stokes equations in a cylindrical pipe

Piotr Kacprzyk (2007)

Applicationes Mathematicae

Global existence of regular solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe with large inflow and outflow is shown. Global existence is proved in two steps. First, by the Leray-Schauder fixed point theorem we prove local existence with large existence time. Next, the local solution is prolonged step by step. The existence is proved without any restrictions on the magnitudes of the inflow, outflow, external force and initial...

Global regular solutions to the Navier-Stokes equations in a cylinder

Wojciech M. Zajączkowski (2006)

Banach Center Publications

The existence and uniqueness of solutions to the Navier-Stokes equations in a cylinder Ω and with boundary slip conditions is proved. Assuming that the azimuthal derivative of cylindrical coordinates and azimuthal coordinate of the initial velocity and the external force are sufficiently small we prove long time existence of regular solutions such that the velocity belongs to W 5 / 2 2 , 1 ( Ω × ( 0 , T ) ) and the gradient of the pressure to L 5 / 2 ( Ω × ( 0 , T ) ) . We prove the existence of solutions without any restrictions on the lengths of the...

Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping

Kwang-Ok Li, Yong-Ho Kim (2023)

Applications of Mathematics

This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.

Global regularity for the 3D MHD system with damping

Zujin Zhang, Xian Yang (2016)

Colloquium Mathematicae

We study the Cauchy problem for the 3D MHD system with damping terms ε | u | α - 1 u and δ | b | β - 1 b (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.

Currently displaying 1121 – 1140 of 3483