Displaying 1161 – 1180 of 3470

Showing per page

Growth Constants of Unstable Surfaces in Cylindrical Systems

L. E. Johns, R. Narayanan (2008)

Mathematical Modelling of Natural Phenomena

We present formulas for the growth rate of surface displacements in phase change problems and flow problems in cylindrical geometries under equilibrium conditions. Our goal is to learn when domain dynamics is important vis-a-vis surface dynamics.

Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems

Ibrahim Cheddadi, Radek Fučík, Mariana I. Prieto, Martin Vohralík (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a posteriori error estimates for singularly perturbed reaction–diffusion problems which yield a guaranteed upper bound on the discretization error and are fully and easily computable. Moreover, they are also locally efficient and robust in the sense that they represent local lower bounds for the actual error, up to a generic constant independent in particular of the reaction coefficient. We present our results in the framework of the vertex-centered finite volume method but their nature...

Guided waves in a fluid layer on an elastic irregular bottom.

Andrés Fraguela Collar (1996)

Publicacions Matemàtiques

In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container withelastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state.One important point to be considered regards the influence of the bottom’s geometry on the propagation of superficial waves. This problem has been already...

Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena

Henri Gouin, Tommaso Ruggeri (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.

Hermite pseudospectral method for nonlinear partial differential equations

Ben-yu Guo, Cheng-long Xu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Hermite polynomial interpolation is investigated. Some approximation results are obtained. As an example, the Burgers equation on the whole line is considered. The stability and the convergence of proposed Hermite pseudospectral scheme are proved strictly. Numerical results are presented.

High order finite volume schemes for numerical solution of 2D and 3D transonic flows

Jiří Fürst, Karel Kozel, Petr Furmánek (2009)

Kybernetika

The aim of this article is a qualitative analysis of two modern finite volume (FVM) schemes. First one is the so called Modified Causon’s scheme, which is based on the classical MacCormack FVM scheme in total variation diminishing (TVD) form, but is simplified in such a way that the demands on computational power are much smaller without loss of accuracy. Second one is implicit WLSQR (Weighted Least Square Reconstruction) scheme combined with various types of numerical fluxes (AUSMPW+ and HLLC)....

High resolution schemes for open channel flow

Brandner, Marek, Egermaier, Jiří, Kopincová, Hana (2010)

Programs and Algorithms of Numerical Mathematics

One of the commonly used models for river flow modelling is based on the Saint-Venant equations - the system of hyperbolic equations with spatially varying flux function and a source term. We introduce finite volume methods that solve this type of balance laws efficiently and satisfy some important properties at the same time. The properties like consistency, stability and convergence are necessary for the mathematically correct solution. However, the schemes should be also positive semidefinite...

Currently displaying 1161 – 1180 of 3470