Gradient theory of phase transitions with boundary contact energy
We present formulas for the growth rate of surface displacements in phase change problems and flow problems in cylindrical geometries under equilibrium conditions. Our goal is to learn when domain dynamics is important vis-a-vis surface dynamics.
We derive a posteriori error estimates for singularly perturbed reaction–diffusion problems which yield a guaranteed upper bound on the discretization error and are fully and easily computable. Moreover, they are also locally efficient and robust in the sense that they represent local lower bounds for the actual error, up to a generic constant independent in particular of the reaction coefficient. We present our results in the framework of the vertex-centered finite volume method but their nature...
In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container withelastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state.One important point to be considered regards the influence of the bottom’s geometry on the propagation of superficial waves. This problem has been already...
In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.
Hermite polynomial interpolation is investigated. Some approximation results are obtained. As an example, the Burgers equation on the whole line is considered. The stability and the convergence of proposed Hermite pseudospectral scheme are proved strictly. Numerical results are presented.