Irreversible behaviour of a relativistic gas
These past few years, new types of computational architectures based on graphics processors have emerged. These technologies provide important computational resources at low cost and low energy consumption. Lots of developments have been done around GPU and many tools and libraries are now available to implement efficiently softwares on those architectures.This article contains the two contributions of the mini-symposium about GPU organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay),...
The article is devoted to the simulation of viscous incompressible fluid flow based on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical approach. Primary goal of using isogemetric analysis is to be always geometrically exact, independently of the discretization, and to avoid a time-consuming generation of meshes of computational domains. For higher Reynolds numbers, we use stabilization techniques SUPG and PSPG. All methods mentioned in the paper are demonstrated...
Some new iterative techniques are defined to solve reversible inverse problems and a common formulation is explained. Numerical improvements are suggested and tests validate the methods.
In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.
In this lecture i present some open mathematical problems concerning some PDE arising in the study of one-dimensional models for granular media.
We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann,...
I shall present some recent work in collaboration with S. Gutierrez on the characterization of all selfsimilar solutions of the binormal flow : which preserve the length parametrization. Above is a curve in , the arclength parameter, and denote the temporal variable. This flow appeared for the first time in the work of Da Rios (1906) as a crude approximation to the evolution of a vortex filament under Euler equation, and it is intimately related to the focusing cubic nonlinear Schrödinger...
We consider the time-periodic Oseen flow around a rotating body in ℝ³. We prove a priori estimates in -spaces of weak solutions for the whole space problem under the assumption that the right-hand side has the divergence form. After a time-dependent change of coordinates the problem is reduced to a stationary Oseen equation with the additional term -(ω ∧ x)·∇u + ω ∧ u in the equation of momentum where ω denotes the angular velocity. We prove the existence of generalized weak solutions in -space...