The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
155
We consider a rotating fluid in a domain with rough horizontal boundaries. The Rossby number, kinematic viscosity and roughness are supposed of characteristic size . We prove a convergence theorem on solutions of Navier-Stokes Coriolis equations, as goes to zero, in the well prepared case. We show in particular that the limit system is a two-dimensional Euler equation with a nonlinear damping term due to boundary layers. We thus generalize the results obtained on flat boundaries with the classical...
In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
In this paper, a class of cell centered finite volume schemes,
on general unstructured meshes, for a linear convection-diffusion
problem, is studied. The convection and the diffusion are respectively
approximated by means of an upwind scheme and the so called diamond
cell method [4]. Our main result is an error estimate of
order h, assuming only the W2,p (for p>2) regularity of the
continuous solution, on a mesh of quadrangles. The proof is based on an
extension of the ideas developed in...
We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion equation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H1 finite volume space. We actually prove the convergence of the scheme in a discrete H1 norm, with an error estimate of order O(h) (on meshes...
The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly...
The problem of modeling acoustic waves scattered by an object with
Neumann boundary condition is considered. The boundary condition is
taken into account by means of the fictitious domain method, yielding
a first order in time mixed variational formulation for the
problem. The resulting system is discretized
with two families of mixed finite elements that are compatible with
mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always...
This work proves the convergence in L¹(ℝ²) towards an Oseen vortex-like solution to the dissipative quasi-geostrophic equations for several sets of initial data with suitable decay at infinity. The relative entropy method applies in a direct way for solving this question in the case of signed initial data and the difficulty lies in showing the existence of unique global solutions for the class of initial data for which all properties needed in the entropy approach are met. However, the estimates...
We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system.
The first scheme converges to weak solutions satisfying an energy and an entropy
dissipation law. The second scheme uses Chorin's
projection method to obtain an efficient approximation that converges to strong
solutions at optimal rates.
The incompressible MHD equations couple Navier-Stokes equations with Maxwell's equations
to describe the flow of a viscous, incompressible, and electrically conducting fluid in
a Lipschitz domain .
We verify convergence of iterates of different coupling and
decoupling fully discrete schemes towards weak solutions for
vanishing discretization parameters. Optimal first order of convergence is shown
in the presence of strong solutions for a splitting scheme which decouples
the computation of velocity...
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities with negative jumps. We show the existence of a stochastic process and a forward flow satisfying and , where is the law of and is the velocity of particle at time . Results on the flow characterization and Lipschitz continuity are also given.Moreover, the map is the entropy solution of a scalar conservation law where the flux represents the particles...
We reduce the convolution of radius functions to that of 1-variable functions. Then we present formulas for computing convolutions of an abstract radius function on ℝ³ with various integral kernels - given by elementary or discontinuous functions. We also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly, we deduce some estimates which enable us to find the asymptotics of the velocity and pressure of a fluid (described by the Navier-Stokes equations) in the boundary...
Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of...
Currently displaying 121 –
140 of
155