Displaying 121 – 140 of 441

Showing per page

On measure solutions to the Zero-pressure gas model and their uniqueness

Jiequan Li, Gerald G. Warnecke (2002)

Mathematica Bohemica

The system of zero-pressure gas dynamics conservation laws describes the dynamics of free particles sticking under collision while mass and momentum are conserved. The existence of such solutions was established some time ago. Here we report a uniqueness result that uses the Oleinik entropy condition and a cohesion condition. Both of these conditions are automatically satisfied by solutions obtained in previous existence results. Important tools in the proof of uniqueness are regularizations, generalized...

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun Xu, C. O. Chow, S. H. Lui (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun Xu, C. O. Chow, S. H. Lui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

On nonstationary motion of a fixed mass of a general fluid bounded by a free surface

Ewa Zadrzyńska, Wojciech M. Zajączkowski (2003)

Banach Center Publications

In the paper the motion of a fixed mass of a viscous compressible heat conducting fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state and the external force, the heat sources and the heat flow through the boundary vanish, we prove the existence of a global in time solution which is close to the equilibrium state for any moment of time.

On nonstationary motion of a fixed mass of a general viscous compressible heat conducting capillary fluid bounded by a free boundary

Ewa Zadrzyńska (1999)

Applicationes Mathematicae

The motion of a fixed mass of a viscous compressible heat conducting capillary fluid is examined. Assuming that the initial data are sufficiently close to a constant state and the external force vanishes we prove the existence of a global-in-time solution which is close to the constant state for any moment of time. Moreover, we present an analogous result for the case of a barotropic viscous compressible fluid.

On numerical solution of compressible flow in time-dependent domains

Miloslav Feistauer, Jaromír Horáček, Václav Kučera, Jaroslava Prokopová (2012)

Mathematica Bohemica

The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations...

Currently displaying 121 – 140 of 441