Displaying 1781 – 1800 of 3487

Showing per page

On a shape control problem for the stationary Navier-Stokes equations

Max D. Gunzburger, Hongchul Kim, Sandro Manservisi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.

On a stabilized colocated Finite Volume scheme for the Stokes problem

Robert Eymard, Raphaèle Herbin, Jean Claude Latché (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We present and analyse in this paper a novel colocated Finite Volume scheme for the solution of the Stokes problem. It has been developed following two main ideas. On one hand, the discretization of the pressure gradient term is built as the discrete transposed of the velocity divergence term, the latter being evaluated using a natural finite volume approximation; this leads to a non-standard interpolation formula for the expression of the pressure on the edges of the control volumes. On the other...

On a steady flow in a three-dimensional infinite pipe

Paweł Konieczny (2006)

Colloquium Mathematicae

The paper examines the steady Navier-Stokes equations in a three-dimensional infinite pipe with mixed boundary conditions (Dirichlet and slip boundary conditions). The velocity of the fluid is assumed to be constant at infinity. The main results show the existence of weak solutions with no restriction on smallness of the flux vector and boundary conditions.

On a temperature-dependent Hele-Shaw flow in one dimension

Antonio Fasano, Laura Pezza (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A model is presented for a Hele-Shaw flow with variable temperature in one space dimension. The problem to be solved is a free boundary problem for a parabolic equation with a non-linear and non-local free boundary condition. Existence and uniqueness are proved.

Currently displaying 1781 – 1800 of 3487