Displaying 1081 – 1100 of 1850

Showing per page

Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses

Jarosław Gocławski, Joanna Sekulska-Nalewajko, Elżbieta Kuźniak (2012)

International Journal of Applied Mathematics and Computer Science

The increased production of Reactive Oxygen Species (ROS) in plant leaf tissues is a hallmark of a plant's reaction to various environmental stresses. This paper describes an automatic segmentation method for scanned images of cucurbits leaves stained to visualise ROS accumulation sites featured by specific colour hues and intensities. The leaves placed separately in the scanner view field on a colour background are extracted by thresholding in the RGB colour space, then cleaned from petioles to...

Neuromorphic features of probabilistic neural networks

Jiří Grim (2007)

Kybernetika

We summarize the main results on probabilistic neural networks recently published in a series of papers. Considering the framework of statistical pattern recognition we assume approximation of class-conditional distributions by finite mixtures of product components. The probabilistic neurons correspond to mixture components and can be interpreted in neurophysiological terms. In this way we can find possible theoretical background of the functional properties of neurons. For example, the general...

New Computational Tools for Modeling Chronic Myelogenous Leukemia

M. M. Peet, P. S. Kim, S.-I. Niculescu, D. Levy (2009)

Mathematical Modelling of Natural Phenomena

In this paper, we consider a system of nonlinear delay-differential equations (DDEs) which models the dynamics of the interaction between chronic myelogenous leukemia (CML), imatinib, and the anti-leukemia immune response. Because of the chaotic nature of the dynamics and the sparse nature of experimental data, we look for ways to use computation to analyze the model without employing direct numerical simulation. In particular, we develop several tools using Lyapunov-Krasovskii analysis that allow...

New Resolution Strategy for Multi-scale Reaction Waves using Time Operator Splitting and Space Adaptive Multiresolution: Application to Human Ischemic Stroke*

Max Duarte, Marc Massot, Stéphane Descombes, Christian Tenaud, Thierry Dumont, Violaine Louvet, Frédérique Laurent (2011)

ESAIM: Proceedings

We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive fronts, spatially very localized. A new resolution strategy was recently introduced ? that combines...

New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model

Bingwen Liu (2015)

Annales Polonici Mathematici

This paper is concerned with a class of Nicholson's blowflies models with multiple time-varying delays, which is defined on the nonnegative function space. Under appropriate conditions, we establish some criteria to ensure that all solutions of this model converge globally exponentially to a positive almost periodic solution. Moreover, we give an example with numerical simulations to illustrate our main results.

New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations

Mimia Benhadri, Tomás Caraballo (2022)

Mathematica Bohemica

This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved.

Node assignment problem in Bayesian networks

Joanna Polanska, Damian Borys, Andrzej Polanski (2006)

International Journal of Applied Mathematics and Computer Science

This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.

Noise Shaping in Neural Populations with Global Delayed Feedback

O. Ávila Åkerberg, M. J. Chacron (2010)

Mathematical Modelling of Natural Phenomena

The interplay between intrinsic and network dynamics has been the focus of many investigations. Here we use a combination of theoretical and numerical approaches to study the effects of delayed global feedback on the information transmission properties of neural networks. Specifically, we compare networks of neurons that display intrinsic interspike interval correlations (nonrenewal) to networks that do not (renewal). We find that excitatory and...

Non local reaction-diffusion equations modelling predator-prey coevolution.

Angel Calsina, Carles Perelló, Joan Saldaña (1994)

Publicacions Matemàtiques

In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.

Currently displaying 1081 – 1100 of 1850