The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality, saying...
This paper deals with the problem of regional observability of hyperbolic systems in the case where the subregion of interest is a boundary part of the system evolution domain. We give a definition and establish characterizations in connection with the sensor structure. Then we show that it is possible to reconstruct the system state on a subregion of the boundary. The developed approach, based on the Hilbert uniqueness method (Lions, 1988), leads to a reconstruction algorithm. The obtained results...
In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.
This article is a proceedings version of the ongoing work [1], and has been the object of a talk of the second author during the Journées “Équations aux Dérivées Partielles” (Biarritz, 2012).We address the decay rates of the energy of the damped wave equation when the damping coefficient does not satisfy the Geometric Control Condition (GCC). First, we give a link with the controllability of the associated Schrödinger equation. We prove that the observability of the Schrödinger group implies that...
We discuss a control problem for the Lamé system which naturally leads to the following uniqueness problem: Given a bounded domain of , are there non-trivial solutions of the evolution Lamé system with homogeneous Dirichlet boundary conditions for which the first two components vanish? We show that such solutions do not exist when the domain is Lipschitz. However, in two space dimensions one can build easily polygonal domains in which there are eigenvibrations with the first component being identically...
In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
In this paper we consider second order evolution equations with unbounded feedbacks.
Under a regularity assumption we show that observability properties for the undamped
problem imply decay estimates for the damped problem. We consider both uniform and
non uniform decay properties.
It is known that for affine nonlinear systems the drift-observability property (i. e. observability for zero input) is not sufficient to guarantee the existence of an asymptotic observer for any input. Many authors studied structural conditions that ensure uniform observability of nonlinear systems (i. e. observability for any input). Conditions are available that define classes of systems that are uniformly observable. This work considers the problem of state observation with exponential error...
The problem of output regulation of the systems affected by unknown constant parameters is considered here. The main goal is to find a unique feedback compensator (independent on the actual values of unknown parameters) that drives a given error (control criterion) asymptotically to zero for all values of parameters from a certain neighbourhood of their nominal value. Such a task is usually referred to as the structurally stable output regulation problem. Under certain assumptions, such a problem...
Currently displaying 1 –
15 of
15