Vortices for a variational problem related to superconductivity

Fabrice Bethuel; Tristan Rivière

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 3, page 243-303
  • ISSN: 0294-1449

How to cite

top

Bethuel, Fabrice, and Rivière, Tristan. "Vortices for a variational problem related to superconductivity." Annales de l'I.H.P. Analyse non linéaire 12.3 (1995): 243-303. <http://eudml.org/doc/78359>.

@article{Bethuel1995,
author = {Bethuel, Fabrice, Rivière, Tristan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Ginzburg-Landau equation; minimizers of Ginzburg-Landau functionals; superconductivity; Higgs models; vortices},
language = {eng},
number = {3},
pages = {243-303},
publisher = {Gauthier-Villars},
title = {Vortices for a variational problem related to superconductivity},
url = {http://eudml.org/doc/78359},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Bethuel, Fabrice
AU - Rivière, Tristan
TI - Vortices for a variational problem related to superconductivity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 3
SP - 243
EP - 303
LA - eng
KW - Ginzburg-Landau equation; minimizers of Ginzburg-Landau functionals; superconductivity; Higgs models; vortices
UR - http://eudml.org/doc/78359
ER -

References

top
  1. [1] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations, Vol. I, 1993, pp. 123-148. Zbl0834.35014MR1261720
  2. [2] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1993. Zbl0802.35142MR1269538
  3. [3] F. Bethuel, H. Brezis and F. Hélein, Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau, C. R. Acad. Sci. Paris, Vol. 314, 1992, pp. 891-895. Zbl0773.49003MR1168319
  4. [4] F. Bethuel, H. Brezis and F. Hélein, Tourbillons de Ginzburg-Landau et énergies renormalisées, to appear inC. R. Acad. Sci. Paris, 1993. Zbl0783.35014MR1231415
  5. [5] H. Brezis, F. Merle and T. Rivière, Quantization effects for -Δu = u (1 - |u|2) in R2, to appear in , Arch. for ratio. Mech.1993. Zbl0809.35019MR1228965
  6. [6] H. Brezis, F. Merle and T. Rivière, Quantifications pour les solutions de -Δu = u(1 - |u|2) dans R2, to appear in C..R. .Acad. Sci. Paris, 1993. MR1228965
  7. [7] A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice, Sur un problème aux limites de la théorie de Ginzburg-Landau, C. R. Acad. Sci. Paris, Vol. 307, 1988, pp. 55-58. Zbl0696.35058MR954091
  8. [8] A. Comtet and G.W. Gibbons, Bogomol'nyi bounds for cosmic strings, Nucl. Phys. B, Vol. 299, 1988, pp. 719-733. MR936758
  9. [9] Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Review, Vol. 34, 1992, pp. 45-81. Zbl0787.65091MR1156289
  10. [10] P. Grisvard, Elliptic Problems in non-smooth domains, Pitman, Marshfields, Mass, 1985. Zbl0695.35060
  11. [11] A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser, 1980. Zbl0457.53034MR614447
  12. [12] D. Saint-James, G. Sarma and E.J. Thomas, Type II Superconductivity, Pergamon Press, 1969. 
  13. [13] J. Spruck and Y. Yang, Cosmic string solutions of the Einstein Matter gauge equations, to appear1993. 
  14. [14] J. Spruck and Y. Yang, On multivortices in the electroweak theory II: existence of Bogomol'nyi solutions in R2, Comm. Math. Phys., Vol. 144, 1992, pp. 215-234. Zbl0748.53060MR1152370
  15. [15] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Presses Univ. deMontreal, 1966. Zbl0151.15501MR251373
  16. [16] Y. Yang, Boundary value problems of the Ginzburg-Landau equations, Proc. Roy. Soc. Edinburgh, Vol. 114 A, 1990, pp. 355-365. Zbl0708.35074MR1055553

Citations in EuDML Documents

top
  1. Hassen Aydi, Etienne Sandier, Vortex analysis of the periodic Ginzburg-Landau model
  2. Tristan Rivière, Line vortices in the U(1) Higgs model
  3. Sylvia Serfaty, Sur l'équation de Ginzburg-Landau avec champ magnétique
  4. S. Alama, A. J. Berlinsky, L. Bronsard, Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field
  5. Etienne Sandier, Sylvia Serfaty, A rigorous derivation of free-boundary problem arising in superconductivity
  6. Sylvia Serfaty, Systems with Coulomb interactions
  7. Etienne Sandier, Sylvia Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field
  8. Stan Alama, Lia Bronsard, J. Alberto Montero, On the Ginzburg–Landau model of a superconducting ball in a uniform field
  9. Tristan Rivière, Asymptotic analysis for the Ginzburg-Landau equations
  10. Ayman Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.