The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Erratum to the paper 'On the disc theorem' (Ann. Polon. Math. 55 (1991), 1-10)”

Bigraphic pairs with a realization containing a split bipartite-graph

Jian Hua Yin, Jia-Yun Li, Jin-Zhi Du, Hai-Yan Li (2019)

Czechoslovak Mathematical Journal

Similarity:

Let K s , t be the complete bipartite graph with partite sets { x 1 , ... , x s } and { y 1 , ... , y t } . A split bipartite-graph on ( s + s ' ) + ( t + t ' ) vertices, denoted by SB s + s ' , t + t ' , is the graph obtained from K s , t by adding s ' + t ' new vertices x s + 1 , ... , x s + s ' , y t + 1 , ... , y t + t ' such that each of x s + 1 , ... , x s + s ' is adjacent to each of y 1 , ... , y t and each of y t + 1 , ... , y t + t ' is adjacent to each of x 1 , ... , x s . Let A and B be nonincreasing lists of nonnegative integers, having lengths m and n , respectively. The pair ( A ; B ) is potentially SB s + s ' , t + t ' -bigraphic if there is a simple bipartite graph containing SB s + s ' , t + t ' (with s + s ' vertices x 1 , ... , x s + s ' in the part of size m ...

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Similarity:

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...

Ramsey numbers for trees II

Zhi-Hong Sun (2021)

Czechoslovak Mathematical Journal

Similarity:

Let r ( G 1 , G 2 ) be the Ramsey number of the two graphs G 1 and G 2 . For n 1 n 2 1 let S ( n 1 , n 2 ) be the double star given by V ( S ( n 1 , n 2 ) ) = { v 0 , v 1 , ... , v n 1 , w 0 , w 1 , ... , w n 2 } and E ( S ( n 1 , n 2 ) ) = { v 0 v 1 , ... , v 0 v n 1 , v 0 w 0 , w 0 w 1 , ... , w 0 w n 2 } . We determine r ( K 1 , m - 1 , S ( n 1 , n 2 ) ) under certain conditions. For n 6 let T n 3 = S ( n - 5 , 3 ) , T n ' ' = ( V , E 2 ) and T n ' ' ' = ( V , E 3 ) , where V = { v 0 , v 1 , ... , v n - 1 } , E 2 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 1 v n - 2 , v 2 v n - 1 } and E 3 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 2 v n - 2 , v 3 v n - 1 } . We also obtain explicit formulas for r ( K 1 , m - 1 , T n ) , r ( T m ' , T n ) ( n m + 3 ) , r ( T n , T n ) , r ( T n ' , T n ) and r ( P n , T n ) , where T n { T n ' ' , T n ' ' ' , T n 3 } , P n is the path on n vertices and T n ' is the unique tree with n vertices and maximal degree n - 2 .

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

Similarity:

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces....

Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt A p -weighted L p -spaces

Ryôhei Kakizawa (2018)

Czechoslovak Mathematical Journal

Similarity:

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt A p -weighted L p -space ( L w p ( Ω ) ) n for any domain Ω in n , n , n 2 , 1 < p < and Muckenhoupt A p -weight w A p . Set p ' : = p / ( p - 1 ) and w ' : = w - 1 / ( p - 1 ) . Then the Helmholtz decomposition of ( L w p ( Ω ) ) n and ( L w ' p ' ( Ω ) ) n and the variational estimate of L w , π p ( Ω ) and L w ' , π p ' ( Ω ) are equivalent. Furthermore, we can replace L w , π p ( Ω ) and L w ' , π p ' ( Ω ) by L w , σ p ( Ω ) and L w ' , σ p ' ( Ω ) , respectively. The proof is based on the reflexivity and orthogonality of L w , π p ( Ω ) and L w , σ p ( Ω ) and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation...

Prime ideal factorization in a number field via Newton polygons

Lhoussain El Fadil (2021)

Czechoslovak Mathematical Journal

Similarity:

Let K be a number field defined by an irreducible polynomial F ( X ) [ X ] and K its ring of integers. For every prime integer p , we give sufficient and necessary conditions on F ( X ) that guarantee the existence of exactly r prime ideals of K lying above p , where F ¯ ( X ) factors into powers of r monic irreducible polynomials in 𝔽 p [ X ] . The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of K lying above p ....

The n -th prime asymptotically

Juan Arias de Reyna, Jérémy Toulisse (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

A new derivation of the classic asymptotic expansion of the n -th prime is presented. A fast algorithm for the computation of its terms is also given, which will be an improvement of that by Salvy (1994). Realistic bounds for the error with li - 1 ( n ) , after having retained the first m terms, for 1 m 11 , are given. Finally, assuming the Riemann Hypothesis, we give estimations of the best possible r 3 such that, for n r 3 , we have p n &gt; s 3 ( n ) where s 3 ( n ) is the sum of the first four terms of the asymptotic...

A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations

Manabu Naito (2024)

Mathematica Bohemica

Similarity:

The half-linear differential equation ( | u ' | α sgn u ' ) ' = α ( λ α + 1 + b ( t ) ) | u | α sgn u , t t 0 , is considered, where α and λ are positive constants and b ( t ) is a real-valued continuous function on [ t 0 , ) . It is proved that, under a mild integral smallness condition of b ( t ) which is weaker than the absolutely integrable condition of b ( t ) , the above equation has a nonoscillatory solution u 0 ( t ) such that u 0 ( t ) e - λ t and u 0 ' ( t ) - λ e - λ t ( t ), and a nonoscillatory solution u 1 ( t ) such that u 1 ( t ) e λ t and u 1 ' ( t ) λ e λ t ( t ).

On the least almost-prime in arithmetic progression

Jinjiang Li, Min Zhang, Yingchun Cai (2023)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 r denote an almost-prime with at most r prime factors, counted according to multiplicity. Suppose that a and q are positive integers satisfying ( a , q ) = 1 . Denote by 𝒫 2 ( a , q ) the least almost-prime 𝒫 2 which satisfies 𝒫 2 a ( mod q ) . It is proved that for sufficiently large q , there holds 𝒫 2 ( a , q ) q 1 . 8345 . This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range 1 . 845 in place of 1 . 8345 .

Convolution theorems for starlike and convex functions in the unit disc

M. Anbudurai, R. Parvatham, S. Ponnusamy, V. Singh (2004)

Annales Polonici Mathematici

Similarity:

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let P β = f A : R e f ' ( z ) > β , z Δ . For λ > 0, suppose that denotes any one of the following classes of functions: M 1 , λ ( 1 ) = f : R e z ( z f ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 2 ) = f : R e z ( z ² f ' ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 3 ) = f : R e 1 / 2 ( z ( z ² f ' ( z ) ) ' ' ) ' - 1 > - λ , z Δ . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ , γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain...

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions. We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any...

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

Similarity:

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results....

Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL 2 ( q ) for q 7

Mark L. Lewis, Yanjun Liu, Hung P. Tong-Viet (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and write cd ( G ) for the degree set of the complex irreducible characters of G . The group G is said to satisfy the two-prime hypothesis if for any distinct degrees a , b cd ( G ) , the total number of (not necessarily different) primes of the greatest common divisor gcd ( a , b ) is at most 2 . We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL 2 ( q ) for q 7 .