Displaying similar documents to “On the structure theory of the Iwasawa algebra of a p-adic Lie group”

Recollements induced by good (co)silting dg-modules

Rongmin Zhu, Jiaqun Wei (2023)

Czechoslovak Mathematical Journal

Similarity:

Let be a dg--module, the endomorphism dg-algebra of . We know that if is a good silting object, then there exist a dg-algebra and a recollement among the derived categories of , of and of . We investigate the condition under which the induced dg-algebra is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained....

Relative tilting modules with respect to a semidualizing module

Maryam Salimi (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be a commutative Noetherian ring, and let be a semidualizing -module. The notion of -tilting -modules is introduced as the relative setting of the notion of tilting -modules with respect to . Some properties of tilting and -tilting modules and the relations between them are mentioned. It is shown that every finitely generated -tilting -module is -projective. Finally, we investigate some kernel subcategories related to -tilting modules.

Local cohomology, cofiniteness and homological functors of modules

Kamal Bahmanpour (2022)

Czechoslovak Mathematical Journal

Similarity:

Let be an ideal of a commutative Noetherian ring . It is shown that the -modules are -cofinite for all finitely generated -modules and all if and only if the -modules and are -cofinite for all finitely generated -modules , and all integers .

Structure of central torsion Iwasawa modules

Susan Howson (2002)

Bulletin de la Société Mathématique de France

Similarity:

We describe an approach to determining, up to pseudoisomorphism, the structure of a central-torsion module over the Iwasawa algebra of a pro-, -adic, Lie group containing no element of order . The techniques employed follow classical methods used in the commutative case, but using Ore’s method of localisation. We then consider the properties of certain invariants which may prove useful in determining the structure of a module. Finally, we describe the case of pro- subgroups of ...

A note on generalizations of semisimple modules

Engin Kaynar, Burcu N. Türkmen, Ergül Türkmen (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A left module over an arbitrary ring is called an -module (or an -module) if every submodule of with is a direct summand of (a supplement in, respectively) . In this paper, we investigate the various properties of -modules and -modules. We prove that is an -module if and only if , where is semisimple. We show that a finitely generated -module is semisimple. This gives us the characterization of semisimple rings in terms of -modules. We completely determine the structure...

Prescribing endomorphism algebras of -free modules

Rüdiger Göbel, Daniel Herden, Saharon Shelah (2014)

Journal of the European Mathematical Society

Similarity:

It is a well-known fact that modules over a commutative ring in general cannot be classified, and it is also well-known that we have to impose severe restrictions on either the ring or on the class of modules to solve this problem. One of the restrictions on the modules comes from freeness assumptions which have been intensively studied in recent decades. Two interesting, distinct but typical examples are the papers by Blass [1] and Eklof [8], both jointly with Shelah. In the first case...

Stratified modules over an extension algebra

Erzsébet Lukács, András Magyar (2018)

Czechoslovak Mathematical Journal

Similarity:

Let be a standard Koszul standardly stratified algebra and an -module. The paper investigates conditions which imply that the module over the Yoneda extension algebra is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.

A note on Frobenius divided modules in mixed characteristics

Pierre Berthelot (2012)

Bulletin de la Société Mathématique de France

Similarity:

If is a smooth scheme over a perfect field of characteristic , and if is the sheaf of differential operators on [7], it is well known that giving an action of on an -module is equivalent to giving an infinite sequence of -modules descending via the iterates of the Frobenius endomorphism of [5]. We show that this result can be generalized to any infinitesimal deformation of a smooth morphism in characteristic , endowed with Frobenius liftings. We also show that it...

On -extending modules

Y. Talebi, R. Mohammadi (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we introduce the concept of -extending modules by -rational submodules and study some properties of such modules. It is shown that the set of all -rational left ideals of is a Gabriel filter. An -module is called -extending if every submodule of is -rational in a direct summand of . It is proved that is -extending if and only if , such that is a -extending submodule of . An example is given to show that the direct sum of -extending modules need not...

The correspondence between Barsotti-Tate groups and Kisin modules when

Tong Liu (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let be a finite extension over and the ring of integers. We prove the equivalence of categories between the category of Kisin modules of height 1 and the category of Barsotti-Tate groups over .

Coherence relative to a weak torsion class

Zhanmin Zhu (2018)

Czechoslovak Mathematical Journal

Similarity:

Let be a ring. A subclass of left -modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let be a weak torsion class of left -modules and a positive integer. Then a left -module is called -finitely generated if there exists a finitely generated submodule such that ; a left -module is called -presented if there exists an exact sequence of left -modules such that are finitely generated free and is -finitely generated;...

Some results on -injective modules, -flat modules and -coherent rings

Zhanmin Zhu (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let be two non-negative integers. A left -module is called -injective, if for every -presented left -module . A right -module is called -flat, if for every -presented left -module . A left -module is called weakly --injective, if for every -presented left -module . A right -module is called weakly -flat, if for every -presented left -module . In this paper, we give some characterizations and properties of -injective modules and -flat modules in...

Rings whose nonsingular right modules are -projective

Yusuf Alagöz, Sinem Benli, Engin Büyükaşık (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A right -module is called -projective provided that it is projective relative to the right -module . This paper deals with the rings whose all nonsingular right modules are -projective. For a right nonsingular ring , we prove that is of finite Goldie rank and all nonsingular right -modules are -projective if and only if is right finitely - and flat right -modules are -projective. Then, -projectivity of the class of nonsingular injective right modules is also considered....

Cominimaxness of local cohomology modules

Moharram Aghapournahr (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be a commutative Noetherian ring, an ideal of . Let be an integer and an -module such that is minimax for all . We prove that if is (or weakly Laskerian) for all , then the -modules are -cominimax for all and is minimax for . Let be a finitely generated -module. We prove that and are -cominimax for all and whenever is minimax and is (or weakly Laskerian) for all .