Displaying similar documents to “Finite groups of OTP projective representation type”

On twisted group algebras of OTP representation type

Leonid F. Barannyk, Dariusz Klein (2012)

Colloquium Mathematicae

Similarity:

Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and G = G p × B is a finite group, where G p is a p-group and B is a p’-group. Denote by S λ G the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for S λ G to be of OTP representation type, in the sense that every indecomposable S λ G -module is isomorphic to the outer tensor product V W of an indecomposable S λ G p -module V and an irreducible...

Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic

Leonid F. Barannyk, Dariusz Klein (2012)

Colloquium Mathematicae

Similarity:

Let S be a commutative complete discrete valuation domain of positive characteristic p, S* the unit group of S, Ω a subgroup of S* and G = G p × B a finite group, where G p is a p-group and B is a p’-group. Denote by S λ G the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). For Ω satisfying a specific condition, we give necessary and sufficient conditions for G to be of OTP projective (S,Ω)-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,Ω) such that every indecomposable...

On twisted group algebras of OTP representation type over the ring of p-adic integers

Leonid F. Barannyk, Dariusz Klein (2016)

Colloquium Mathematicae

Similarity:

Let ̂ p be the ring of p-adic integers, U ( ̂ p ) the unit group of ̂ p and G = G p × B a finite group, where G p is a p-group and B is a p’-group. Denote by ̂ p λ G the twisted group algebra of G over ̂ p with a 2-cocycle λ Z ² ( G , U ( ̂ p ) ) . We give necessary and sufficient conditions for ̂ p λ G to be of OTP representation type, in the sense that every indecomposable ̂ p λ G -module is isomorphic to the outer tensor product V W of an indecomposable ̂ p λ G p -module V and an irreducible ̂ p λ B -module W.

Ding projective and Ding injective modules over trivial ring extensions

Lixin Mao (2023)

Czechoslovak Mathematical Journal

Similarity:

Let R M be a trivial extension of a ring R by an R - R -bimodule M such that M R , R M , ( R , 0 ) R M and R M ( R , 0 ) have finite flat dimensions. We prove that ( X , α ) is a Ding projective left R M -module if and only if the sequence M R M R X M α M R X α X is exact and coker ( α ) is a Ding projective left R -module. Analogously, we explicitly describe Ding injective R M -modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.

Rings whose nonsingular right modules are R -projective

Yusuf Alagöz, Sinem Benli, Engin Büyükaşık (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A right R -module M is called R -projective provided that it is projective relative to the right R -module R R . This paper deals with the rings whose all nonsingular right modules are R -projective. For a right nonsingular ring R , we prove that R R is of finite Goldie rank and all nonsingular right R -modules are R -projective if and only if R is right finitely Σ - C S and flat right R -modules are R -projective. Then, R -projectivity of the class of nonsingular injective right modules is also considered....

Homological dimensions for endomorphism algebras of Gorenstein projective modules

Aiping Zhang, Xueping Lei (2024)

Czechoslovak Mathematical Journal

Similarity:

Let A be a CM-finite Artin algebra with a Gorenstein-Auslander generator E , M be a Gorenstein projective A -module and B = End A M . We give an upper bound for the finitistic dimension of B in terms of homological data of M . Furthermore, if A is n -Gorenstein for 2 n < , then we show the global dimension of B is less than or equal to n plus the B -projective dimension of Hom A ( M , E ) . As an application, the global dimension of End A E is less than or equal to n .

α -modules and generalized submodules

Rafiquddin Rafiquddin, Ayazul Hasan, Mohammad Fareed Ahmad (2019)

Communications in Mathematics

Similarity:

A QTAG-module M is an α -module, where α is a limit ordinal, if M / H β ( M ) is totally projective for every ordinal β < α . In the present paper α -modules are studied with the help of α -pure submodules, α -basic submodules, and α -large submodules. It is found that an α -closed α -module is an α -injective. For any ordinal ω α ω 1 we prove that an α -large submodule L of an ω 1 -module M is summable if and only if M is summable.

Some homological properties of amalgamated modules along an ideal

Hanieh Shoar, Maryam Salimi, Abolfazl Tehranian, Hamid Rasouli, Elham Tavasoli (2023)

Czechoslovak Mathematical Journal

Similarity:

Let R and S be commutative rings with identity, J be an ideal of S , f : R S be a ring homomorphism, M be an R -module, N be an S -module, and let ϕ : M N be an R -homomorphism. The amalgamation of R with S along J with respect to f denoted by R f J was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of ( R f J ) -module called the amalgamation of M and N along J with respect to ϕ , and denoted by M ϕ J N . We study some homological properties of the ( R f J ) -module M ϕ J N . Among...

Representations of a class of positively based algebras

Shiyu Lin, Shilin Yang (2023)

Czechoslovak Mathematical Journal

Similarity:

We investigate the representation theory of the positively based algebra A m , d , which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that A m , d is of finite representative type if d 4 , of tame type if d = 5 , and of wild type if d 6 . In the case when d 4 , all indecomposable representations of A m , d are constructed. Furthermore, their right cell representations as well as left cell representations of A m , d are described. ...

Strongly ( 𝒯 , n ) -coherent rings, ( 𝒯 , n ) -semihereditary rings and ( 𝒯 , n ) -regular rings

Zhanmin Zhu (2020)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. A left R -module M is called ( 𝒯 , n ) -injective if Ext R n ( C , M ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a right R -module M is called ( 𝒯 , n ) -flat if Tor n R ( M , C ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a left R -module M is called ( 𝒯 , n ) -projective if Ext R n ( M , N ) = 0 for each ( 𝒯 , n ) -injective left R -module N ; the ring R is called strongly ( 𝒯 , n ) -coherent if whenever 0 K P C 0 is exact, where C is ( 𝒯 , n + 1 ) -presented and P is finitely generated projective, then K is ( 𝒯 , n ) -projective; the ring R is called...

Some isomorphic properties in projective tensor products

Ioana Ghenciu (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give sufficient conditions implying that the projective tensor product of two Banach spaces X and Y has the p -sequentially Right and the p - L -limited properties, 1 p < .

The module of vector-valued modular forms is Cohen-Macaulay

Richard Gottesman (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H denote a finite index subgroup of the modular group Γ and let ρ denote a finite-dimensional complex representation of H . Let M ( ρ ) denote the collection of holomorphic vector-valued modular forms for ρ and let M ( H ) denote the collection of modular forms on H . Then M ( ρ ) is a -graded M ( H ) -module. It has been proven that M ( ρ ) may not be projective as a M ( H ) -module. We prove that M ( ρ ) is Cohen-Macaulay as a M ( H ) -module. We also explain how to apply this result to prove that if M ( H ) is a polynomial ring, then...

Coherence relative to a weak torsion class

Zhanmin Zhu (2018)

Czechoslovak Mathematical Journal

Similarity:

Let R be a ring. A subclass 𝒯 of left R -modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. Then a left R -module M is called 𝒯 -finitely generated if there exists a finitely generated submodule N such that M / N 𝒯 ; a left R -module A is called ( 𝒯 , n ) -presented if there exists an exact sequence of left R -modules 0 K n - 1 F n - 1 F 1 F 0 M 0 such that F 0 , , F n - 1 are finitely generated free and K n - 1 is 𝒯 -finitely generated;...

On n -submodules and G . n -submodules

Somayeh Karimzadeh, Javad Moghaderi (2023)

Czechoslovak Mathematical Journal

Similarity:

We investigate some properties of n -submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an n -submodule. Also, we show that if M is a finitely generated R -module and Ann R ( M ) is a prime ideal of R , then M has n -submodule. Moreover, we define the notion of G . n -submodule, which is a generalization of the notion of n -submodule. We find some characterizations of G . n -submodules and we examine the way the aforementioned notions are related...

Relative tilting modules with respect to a semidualizing module

Maryam Salimi (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, and let C be a semidualizing R -module. The notion of C -tilting R -modules is introduced as the relative setting of the notion of tilting R -modules with respect to C . Some properties of tilting and C -tilting modules and the relations between them are mentioned. It is shown that every finitely generated C -tilting R -module is C -projective. Finally, we investigate some kernel subcategories related to C -tilting modules.

Some results on ( n , d ) -injective modules, ( n , d ) -flat modules and n -coherent rings

Zhanmin Zhu (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let n , d be two non-negative integers. A left R -module M is called ( n , d ) -injective, if Ext d + 1 ( N , M ) = 0 for every n -presented left R -module N . A right R -module V is called ( n , d ) -flat, if Tor d + 1 ( V , N ) = 0 for every n -presented left R -module N . A left R -module M is called weakly n - F P -injective, if Ext n ( N , M ) = 0 for every ( n + 1 ) -presented left R -module N . A right R -module V is called weakly n -flat, if Tor n ( V , N ) = 0 for every ( n + 1 ) -presented left R -module N . In this paper, we give some characterizations and properties of ( n , d ) -injective modules and ( n , d ) -flat modules in...

Characterizing projective general unitary groups PGU 3 ( q 2 ) by their complex group algebras

Farrokh Shirjian, Ali Iranmanesh (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group. Let X 1 ( G ) be the first column of the ordinary character table of G . We will show that if X 1 ( G ) = X 1 ( PGU 3 ( q 2 ) ) , then G PGU 3 ( q 2 ) . As a consequence, we show that the projective general unitary groups PGU 3 ( q 2 ) are uniquely determined by the structure of their complex group algebras.