Displaying similar documents to “Carleson's theorem with quadratic phase functions”

L p type mapping estimates for oscillatory integrals in higher dimensions

G. Sampson (2006)

Studia Mathematica

Similarity:

We show in two dimensions that if K f = ² k ( x , y ) f ( y ) d y , k ( x , y ) = ( e i x a · y b ) / ( | x - y | η ) , p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), v p ( y ) = y ( p / p ' ) ( 1 ̅ - b / a ) , then | | K f | | p C | | f | | p , v p if η + α₁ + α₂ < 2, α j = 1 - b j / a j , j = 1,2. Our methods apply in all dimensions and also for more general kernels.

Local integrability of strong and iterated maximal functions

Paul Alton Hagelstein (2001)

Studia Mathematica

Similarity:

Let M S denote the strong maximal operator. Let M x and M y denote the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical directions in ℝ². A function h supported on the unit square Q = [0,1]×[0,1] is exhibited such that Q M y M x h < but Q M x M y h = . It is shown that if f is a function supported on Q such that Q M y M x f < but Q M x M y f = , then there exists a set A of finite measure in ℝ² such that A M S f = .

Maximal operators of Fejér means of double Vilenkin-Fourier series

István Blahota, György Gát, Ushangi Goginava (2007)

Colloquium Mathematicae

Similarity:

The main aim of this paper is to prove that the maximal operator σ * : = s u p | σ n , n | of the Fejér means of the double Vilenkin-Fourier series is not bounded from the Hardy space H 1 / 2 to the space weak- L 1 / 2 .

One-sided discrete square function

A. de la Torre, J. L. Torrea (2003)

Studia Mathematica

Similarity:

Let f be a measurable function defined on ℝ. For each n ∈ ℤ we consider the average A f ( x ) = 2 - n x x + 2 f . The square function is defined as S f ( x ) = ( n = - | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 . The local version of this operator, namely the operator S f ( x ) = ( n = - 0 | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 , is of interest in ergodic theory and it has been extensively studied. In particular it has been proved [3] that it is of weak type (1,1), maps L p into itself (p > 1) and L into BMO. We prove that the operator S not only maps L into BMO but it also maps BMO into BMO. We also prove that the L p boundedness...

Radial maximal function characterizations for Hardy spaces on RD-spaces

Loukas Grafakos, Liguang Liu, Dachun Yang (2009)

Bulletin de la Société Mathématique de France

Similarity:

An RD-space 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type 𝒳 having “dimension” n , there exists a p 0 ( n / ( n + 1 ) , 1 ) such that for certain classes of distributions, the L p ( 𝒳 ) quasi-norms of their radial maximal functions and grand maximal functions are equivalent when p ( p 0 , ] . This result yields a radial maximal function characterization for Hardy spaces on 𝒳 . ...

Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions

Fabio Berra (2022)

Czechoslovak Mathematical Journal

Similarity:

We give a quantitative characterization of the pairs of weights ( w , v ) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak ( p , p ) type inequality for 1 p < . More precisely, given any measurable set E 0 , the estimate w ( { x n : M + , d ( 𝒳 E 0 ) ( x ) > t } ) C [ ( w , v ) ] A p + , d ( ) p t p v ( E 0 ) holds if and only if the pair ( w , v ) belongs to A p + , d ( ) , that is, | E | | Q | [ ( w , v ) ] A p + , d ( ) v ( E ) w ( Q ) 1 / p for every dyadic cube Q and every measurable set E Q + . The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the...

A radial estimate for the maximal operator associated with the free Schrödinger equation

Sichun Wang (2006)

Studia Mathematica

Similarity:

Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator S d and its associated global maximal operator S * * d by ( S d f ) ( x , t ) = 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ, ( S * * d f ) ( x ) = s u p t | 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ | , f ∈ (ℝⁿ), x ∈ ℝⁿ, where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, S d f is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥...

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

The weak type inequality for the Walsh system

Ushangi Goginava (2008)

Studia Mathematica

Similarity:

The main aim of this paper is to prove that the maximal operator σ is bounded from the Hardy space H 1 / 2 to weak- L 1 / 2 and is not bounded from H 1 / 2 to L 1 / 2 .

Marcinkiewicz integrals on product spaces

H. Al-Qassem, A. Al-Salman, L. C. Cheng, Y. Pan (2005)

Studia Mathematica

Similarity:

We prove the L p boundedness of the Marcinkiewicz integral operators μ Ω on n × × n k under the condition that Ω L ( l o g L ) k / 2 ( n - 1 × × n k - 1 ) . The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.

Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces

Kristóf Szarvas, Ferenc Weisz (2016)

Czechoslovak Mathematical Journal

Similarity:

The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces L p ( d ) (in the case p > 1 ), but (in the case when 1 / p ( · ) is log-Hölder continuous and p - = inf { p ( x ) : x d } > 1 ) on the variable Lebesgue spaces L p ( · ) ( d ) , too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type ( 1 , 1 ) . In the present note we generalize Besicovitch’s covering theorem for the so-called γ -rectangles. We introduce a general maximal operator M s γ , δ and with the help of generalized Φ -functions, the strong-...

A complete characterization of R-sets in the theory of differentiation of integrals

G. A. Karagulyan (2007)

Studia Mathematica

Similarity:

Let s be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis s differentiates the integral of f if s ∉ S, and D ̅ s f ( x ) = l i m s u p d i a m ( R ) 0 , x R s | R | - 1 R f = almost everywhere if s ∈ S. If the condition D ̅ s f ( x ) = holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a G δ (resp. a G δ σ ).

The method of rotation and Marcinkiewicz integrals on product domains

Jiecheng Chen, Dashan Fan, Yiming Ying (2002)

Studia Mathematica

Similarity:

We give some rather weak sufficient condition for L p boundedness of the Marcinkiewicz integral operator μ Ω on the product spaces × m (1 < p < ∞), which improves and extends some known results.

Transference and restriction of maximal multiplier operators on Hardy spaces

Zhixin Liu, Shanzhen Lu (1993)

Studia Mathematica

Similarity:

The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces H p ( n ) and H p ( n ) , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an L ( n ) function m is a maximal multiplier on H p ( n ) if and only if it is a maximal multiplier on H p ( n ) . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered. ...

Hilbert series of the Grassmannian and k -Narayana numbers

Lukas Braun (2019)

Communications in Mathematics

Similarity:

We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the q -Hilbert series is a Vandermonde-like determinant. We show that the h -polynomial of the Grassmannian coincides with the k -Narayana polynomial. A simplified formula for the h -polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the k -Narayana numbers,...

Estimates with global range for oscillatory integrals with concave phase

Bjorn Gabriel Walther (2002)

Colloquium Mathematicae

Similarity:

We consider the maximal function | | ( S a f ) [ x ] | | L [ - 1 , 1 ] where ( S a f ) ( t ) ( ξ ) = e i t | ξ | a f ̂ ( ξ ) and 0 < a < 1. We prove the global estimate | | S a f | | L ² ( , L [ - 1 , 1 ] ) C | | f | | H s ( ) , s > a/4, with C independent of f. This is known to be almost sharp with respect to the Sobolev regularity s.

Weighted H p spaces

José García-Cuerva

Similarity:

CONTENTSIntroduction.......................................................................................................................................................... 5Chapter I. Some preliminary lemmas............................................................................................................ 8Chapter II. Weighted H p spaces of analytic functions.......................................................................... 13 1. Behaviour at the boundary..........................................................................................................................

Nonrectifiable oscillatory solutions of second order linear differential equations

Takanao Kanemitsu, Satoshi Tanaka (2017)

Archivum Mathematicum

Similarity:

The second order linear differential equation ( p ( x ) y ' ) ' + q ( x ) y = 0 , x ( 0 , x 0 ] is considered, where p , q C 1 ( 0 , x 0 ] , p ( x ) > 0 , q ( x ) > 0 for x ( 0 , x 0 ] . Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.

A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces

D. Cruz-Uribe, L. Diening, A. Fiorenza (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space L p ( ) whenever the exponent function p ( ) satisfies log-Hölder continuity conditions. We include the case where p ( ) assumes the value infinity. The same proof also shows that the fractional maximal operator M a , 0 < a < n , maps L p ( ) into L q ( ) , where 1 / p ( ) - 1 / q ( ) = a / n .

Maximal non λ -subrings

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with unity. The notion of maximal non λ -subrings is introduced and studied. A ring R is called a maximal non λ -subring of a ring T if R T is not a λ -extension, and for any ring S such that R S T , S T is a λ -extension. We show that a maximal non λ -subring R of a field has at most two maximal ideals, and exactly two if R is integrally closed in the given field. A determination of when the classical D + M construction is a maximal non λ -domain is given. A necessary condition...

Maximal non-pseudovaluation subrings of an integral domain

Rahul Kumar (2024)

Czechoslovak Mathematical Journal

Similarity:

The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let R S be an extension of domains. Then R is called a maximal non-pseudovaluation subring of S if R is not a pseudovaluation subring of S , and for any ring T such that R T S , T is a pseudovaluation subring of S . We show that if S is not local, then there no such T exists between R and S . We also characterize maximal non-pseudovaluation subrings of a local integral domain.

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Certain simple maximal subfields in division rings

Mehdi Aaghabali, Mai Hoang Bien (2019)

Czechoslovak Mathematical Journal

Similarity:

Let D be a division ring finite dimensional over its center F . The goal of this paper is to prove that for any positive integer n there exists a D ( n ) , the n th multiplicative derived subgroup such that F ( a ) is a maximal subfield of D . We also show that a single depth- n iterated additive commutator would generate a maximal subfield of D .

Carleson measures associated with families of multilinear operators

Loukas Grafakos, Lucas Oliveira (2012)

Studia Mathematica

Similarity:

We investigate the construction of Carleson measures from families of multilinear integral operators applied to tuples of L and BMO functions. We show that if the family R t of multilinear operators has cancellation in each variable, then for BMO functions b₁, ..., bₘ, the measure | R t ( b , . . . , b ) ( x ) | ² d x d t / t is Carleson. However, if the family of multilinear operators has cancellation in all variables combined, this result is still valid if b j are L functions, but it may fail if b j are unbounded BMO functions, as...

Polar wavelets and associated Littlewood-Paley theory

Epperson Jay, Frazier Michael

Similarity:

Abstract We develop an almost orthogonal wavelet-type expansion in ℝ² which is adapted to polar coordinates. We start by defining a product Fourier-Hankel transform f̂ and proving a sampling formula for f such that f̂ is compactly supported. For general f, the sampling formula and a partition of unity lead to an identity of the form f = μ , k , m f , φ μ k m ψ μ k m , in which each function φ μ k m and ψ μ k m is concentrated near a certain annular sector, has compactly supported product Fourier-Hankel transform, and is smooth...