Displaying similar documents to “Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval”

A spatially sixth-order hybrid L 1 -CCD method for solving time fractional Schrödinger equations

Chun-Hua Zhang, Jun-Wei Jin, Hai-Wei Sun, Qin Sheng (2021)

Applications of Mathematics

Similarity:

We consider highly accurate schemes for nonlinear time fractional Schrödinger equations (NTFSEs). While an L 1 strategy is employed for approximating the Caputo fractional derivative in the temporal direction, compact CCD finite difference approaches are incorporated in the space. A highly effective hybrid L 1 -CCD method is implemented successfully. The accuracy of this linearized scheme is order six in space, and order 2 - γ in time, where 0 < γ < 1 is the order of the Caputo fractional derivative...

Stochastic differential equations with Sobolev drifts and driven by α -stable processes

Xicheng Zhang (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this article we prove the pathwise uniqueness for stochastic differential equations in d with time-dependent Sobolev drifts, and driven by symmetric α -stable processes provided that α ( 1 , 2 ) and its spectral measure is non-degenerate. In particular, the drift is allowed to have jump discontinuity when α ( 2 d d + 1 , 2 ) . Our proof is based on some estimates of Krylov’s type for purely discontinuous semimartingales.

Fractional Laplacian with singular drift

Tomasz Jakubowski (2011)

Studia Mathematica

Similarity:

For α ∈ (1,2) we consider the equation t u = Δ α / 2 u + b · u , where b is a time-independent, divergence-free singular vector field of the Morrey class M 1 - α . We show that if the Morrey norm | | b | | M 1 - α is sufficiently small, then the fundamental solution is globally in time comparable with the density of the isotropic stable process.

Optimal potentials for Schrödinger operators

Giuseppe Buttazzo, Augusto Gerolin, Berardo Ruffini, Bozhidar Velichkov (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

We consider the Schrödinger operator - Δ + V ( x ) on H 0 1 ( Ω ) , where Ω is a given domain of d . Our goal is to study some optimization problems where an optimal potential V 0 has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.

A uniform dimension result for two-dimensional fractional multiplicative processes

Xiong Jin (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Given a two-dimensional fractional multiplicative process ( F t ) t [ 0 , 1 ] determined by two Hurst exponents H 1 and H 2 , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of [ 0 , 1 ] by F if and only if H 1 = H 2 .

On the equivalence of Green functions for general Schrödinger operators on a half-space

Abdoul Ifra, Lotfi Riahi (2004)

Annales Polonici Mathematici

Similarity:

We consider the general Schrödinger operator L = d i v ( A ( x ) x ) - μ on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function G Δ provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity K considered by Zhao and Pinchover. As an application we study the cone L ( ) of all positive L-solutions continuously...

H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes

Jacek Dziubański, Jacek Zienkiewicz (2003)

Colloquium Mathematicae

Similarity:

Let A = -Δ + V be a Schrödinger operator on d , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of H A p if the maximal function s u p t > 0 | T t f ( x ) | belongs to L p ( d ) , where T t t > 0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space H A p admits a special atomic decomposition.

Fractional integral operators on B p , λ with Morrey-Campanato norms

Katsuo Matsuoka, Eiichi Nakai (2011)

Banach Center Publications

Similarity:

We introduce function spaces B p , λ with Morrey-Campanato norms, which unify B p , λ , C M O p , λ and Morrey-Campanato spaces, and prove the boundedness of the fractional integral operator I α on these spaces.

Hardy spaces H¹ for Schrödinger operators with certain potentials

Jacek Dziubański, Jacek Zienkiewicz (2004)

Studia Mathematica

Similarity:

Let K t t > 0 be the semigroup of linear operators generated by a Schrödinger operator -L = Δ - V with V ≥ 0. We say that f belongs to H ¹ L if | | s u p t > 0 | K t f ( x ) | | | L ¹ ( d x ) < . We state conditions on V and K t which allow us to give an atomic characterization of the space H ¹ L .

Existence and multiplicity results for a nonlinear stationary Schrödinger equation

Danila Sandra Moschetto (2010)

Annales Polonici Mathematici

Similarity:

We revisit Kristály’s result on the existence of weak solutions of the Schrödinger equation of the form -Δu + a(x)u = λb(x)f(u), x N , u H ¹ ( N ) , where λ is a positive parameter, a and b are positive functions, while f : is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.

Existence Results for a Fractional Boundary Value Problem via Critical Point Theory

A. Boucenna, Toufik Moussaoui (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper, we consider the following boundary value problem D T - α ( D 0 + α ( D T - α ( D 0 + α u ( t ) ) ) ) = f ( t , u ( t ) ) , t [ 0 , T ] , u ( 0 ) = u ( T ) = 0 D T - α ( D 0 + α u ( 0 ) ) = D T - α ( D 0 + α u ( T ) ) = 0 , where 0 < α 1 and f : [ 0 , T ] × is a continuous function, D 0 + α , D T - α are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.

Density of some sequences modulo 1

Artūras Dubickas (2012)

Colloquium Mathematicae

Similarity:

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts a / n n = 1 is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length c N - 0 . 475 contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.

Sharp trace asymptotics for a class of 2 D -magnetic operators

Horia D. Cornean, Søren Fournais, Rupert L. Frank, Bernard Helffer (2013)

Annales de l’institut Fourier

Similarity:

In this paper we prove a two-term asymptotic formula for the spectral counting function for a 2 D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a 2 D Fermi gas submitted to a constant external magnetic field. The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for...

On the number of positive solutions of singularly perturbed 1D nonlinear Schrödinger equations

Patricio Felmer, Salomé Martínez, Kazunaga Tanaka (2006)

Journal of the European Mathematical Society

Similarity:

We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When V ( x ) has multiple critical points, (1.1) has a wide variety of positive solutions for small ε and the number of positive solutions increases to as ε 0 . We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of V ( x ) . Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.

Semigroups generated by certain pseudo-differential operators on the half-space 0 + n + 1

Victoria Knopova (2004)

Colloquium Mathematicae

Similarity:

The aim of the paper is two-fold. First, we investigate the ψ-Bessel potential spaces on 0 + n + 1 and study some of their properties. Secondly, we consider the fractional powers of an operator of the form - A ± = - ψ ( D x ' ) ± / ( x n + 1 ) , ( x ' , x n + 1 ) 0 + n + 1 , where ψ ( D x ' ) is an operator with real continuous negative definite symbol ψ: ℝⁿ → ℝ. We define the domain of the operator - ( - A ± ) α and prove that with this domain it generates an L p -sub-Markovian semigroup.

Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling

Agus Leonardi Soenjaya (2022)

Mathematica Bohemica

Similarity:

Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in ( u , n ) L 2 × L 2 under some conditions on the nonlinearity (the coupling term), by using the L 2 conservation law for u and controlling the growth of n via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in...

The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula

Chein-Shan Liu, Botong Li (2024)

Applications of Mathematics

Similarity:

The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an n -dimensional matrix eigenvalue problem is derived with a special matrix 𝐀 : = [ a i j ] , that is, a i j = 0 if i + j is odd.Based on the product formula, an integration method with a fictitious...

Fractional global domination in graphs

Subramanian Arumugam, Kalimuthu Karuppasamy, Ismail Sahul Hamid (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, g ( N [ v ] ) = u N [ v ] g ( u ) 1 and g ( N ( v ) ¯ ) = u N ( v ) g ( u ) 1 . A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number γ f g ( G ) is defined as follows: γ f g ( G ) = min|g|:g is an MGDF of G where | g | = v V g ( v ) . In this paper we initiate a study of this parameter.

Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces

Katsuo Matsuoka (2014)

Banach Center Publications

Similarity:

We introduce the generalized fractional integrals I ̃ α , d and prove the strong and weak boundedness of I ̃ α , d on the central Morrey spaces B p , λ ( ) . In order to show the boundedness, the generalized λ-central mean oscillation spaces Λ p , λ ( d ) ( ) and the generalized weak λ-central mean oscillation spaces W Λ p , λ ( d ) ( ) play an important role.

Waves in Honeycomb Structures

Charles L. Fefferman, Michael I. Weinstein (2012)

Journées Équations aux dérivées partielles

Similarity:

We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, V . In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of H V = - Δ + V and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution e - i H V t ψ 0 , for data ψ 0 , which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion...