Displaying 581 – 600 of 1313

Showing per page

Note on "construction of uninorms on bounded lattices"

Xiu-Juan Hua, Hua-Peng Zhang, Yao Ouyang (2021)

Kybernetika

In this note, we point out that Theorem 3.1 as well as Theorem 3.5 in G. D. Çaylı and F. Karaçal (Kybernetika 53 (2017), 394-417) contains a superfluous condition. We have also generalized them by using closure (interior, resp.) operators.

Notes on locally internal uninorm on bounded lattices

Gül Deniz Çaylı, Ümit Ertuğrul, Tuncay Köroğlu, Funda Karaçal (2017)

Kybernetika

In the study, we introduce the definition of a locally internal uninorm on an arbitrary bounded lattice L . We examine some properties of an idempotent and locally internal uninorm on an arbitrary bounded latice L , and investigate relationship between these operators. Moreover, some illustrative examples are added to show the connection between idempotent and locally internal uninorm.

Null events and stochastical independence

Giulianella Colleti, Romano Scozzafava (1998)

Kybernetika

In this paper we point out the lack of the classical definitions of stochastical independence (particularly with respect to events of 0 and 1 probability) and then we propose a definition that agrees with all the classical ones when the probabilities of the relevant events are both different from 0 and 1, but that is able to focus the actual stochastical independence also in these extreme cases. Therefore this definition avoids inconsistencies such as the possibility that an event A can be at the...

Object-Free Definition of Categories

Marco Riccardi (2013)

Formalized Mathematics

Category theory was formalized in Mizar with two different approaches [7], [18] that correspond to those most commonly used [16], [5]. Since there is a one-to-one correspondence between objects and identity morphisms, some authors have used an approach that does not refer to objects as elements of the theory, and are usually indicated as object-free category [1] or as arrowsonly category [16]. In this article is proposed a new definition of an object-free category, introducing the two properties:...

On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms

Michał Baczyński, Tomasz Szostok, Wanda Niemyska (2014)

Kybernetika

Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) f ( min ( x + y , a ) ) = min ( f ( x ) + f ( y ) , b ) , where a , b > 0 and f : [ 0 , a ] [ 0 , b ] is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation f ( m 1 ( x + y ) ) = m 2 ( f ( x ) + f ( y ) ) , where m 1 , m 2 are functions...

Currently displaying 581 – 600 of 1313