Počítačová lingvistika ve vztahu k informatice
The polyadic algebras that arise from the algebraization of the first-order extensions of a SIC are characterized and a representation theorem is proved. Standard implicational calculi (SIC)'s were considered by H. Rasiowa [19] and include classical and intuitionistic logic and their various weakenings and fragments, the many-valued logics of Post and Łukasiewicz, modal logics that admit the rule of necessitation, BCK logic, etc.
In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11], [12]. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].
In this note we characterize bipartite MV-algebras by introducing the notion of preboolean MV-algebras.
First of a series of articles laying down the bases for classical first order model theory. These articles introduce a framework for treating arbitrary languages with equality. This framework is kept as generic and modular as possible: both the language and the derivation rule are introduced as a type, rather than a fixed functor; definitions and results regarding syntax, semantics, interpretations and sequent derivation rules, respectively, are confined to separate articles, to mark out the hierarchy...