Displaying 61 – 80 of 133

Showing per page

On MPT-implication functions for fuzzy logic.

Enric Trillas, Claudi Alsina, Ana Pradera (2004)

RACSAM

This paper deals with numerical functions J : [0,1] x [0,1] → [0,1] able to functionally express operators →: [0,1]X x [0,1]Y → [0,1]XxY defined as (μ → σ)(x,y) = J(μ(x),σ(y)), and verifying either Modus Ponens or Modus Tollens, or both. The concrete goal of the paper is to search for continuous t-norms T and strong-negation functions N for which it is either T(a, J(a,b)) ≤ b (Modus Ponens) or T(N(b), J(a,b)) ≤ N(a) (Modus Tollens), or both, for all a,b in [0,1] and a given J. Functions J are taken...

On Multiset Ordering

Grzegorz Bancerek (2016)

Formalized Mathematics

Formalization of a part of [11]. Unfortunately, not all is possible to be formalized. Namely, in the paper there is a mistake in the proof of Lemma 3. It states that there exists x ∈ M1 such that M1(x) > N1(x) and (∀y ∈ N1)x ⊀ y. It should be M1(x) ⩾ N1(x). Nevertheless we do not know whether x ∈ N1 or not and cannot prove the contradiction. In the article we referred to [8], [9] and [10].

On permutographs

Thomas, Gerhard G. (1982)

Proceedings of the 10th Winter School on Abstract Analysis

On pseudo BE-algebras

Rajab Ali Borzooei, Arsham Borumand Saeid, Akbar Rezaei, Akefe Radfar, Reza Ameri (2013)

Discussiones Mathematicae - General Algebra and Applications

In this paper, we introduce the notion of pseudo BE-algebra which is a generalization of BE-algebra. We define the concepts of pseudo subalgebras and pseudo filters and prove that, under some conditions, pseudo subalgebra can be a pseudo filter. We prove that every homomorphic image and pre-image of a pseudo filter is also a pseudo filter. Furthermore, the notion of pseudo upper sets in pseudo BE-algebras introduced and is proved that every pseudo filter is an union of pseudo upper sets.

On Rough Subgroup of a Group

Xiquan Liang, Dailu Li (2009)

Formalized Mathematics

This article describes a rough subgroup with respect to a normal subgroup of a group, and some properties of the lower and the upper approximations in a group.

On sequent calculi for intuitionistic propositional logic

Vítězslav Švejdar (2006)

Commentationes Mathematicae Universitatis Carolinae

The well-known Dyckoff's 1992 calculus/procedure for intuitionistic propositional logic is considered and analyzed. It is shown that the calculus is Kripke complete and the procedure in fact works in polynomial space. Then a multi-conclusion intuitionistic calculus is introduced, obtained by adding one new rule to known calculi. A simple proof of Kripke completeness and polynomial-space decidability of this calculus is given. An upper bound on the depth of a Kripke counter-model is obtained.

Currently displaying 61 – 80 of 133