Displaying 801 – 820 of 1306

Showing per page

Semiring of Sets

Roland Coghetto (2014)

Formalized Mathematics

Schmets [22] has developed a measure theory from a generalized notion of a semiring of sets. Goguadze [15] has introduced another generalized notion of semiring of sets and proved that all known properties that semiring have according to the old definitions are preserved. We show that this two notions are almost equivalent. We note that Patriota [20] has defined this quasi-semiring. We propose the formalization of some properties developed by the authors.

Semiring of Sets: Examples

Roland Coghetto (2014)

Formalized Mathematics

This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

Separability of Real Normed Spaces and Its Basic Properties

Kazuhisa Nakasho, Noboru Endou (2015)

Formalized Mathematics

In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the last section,...

Sequent Calculus, Derivability, Provability. Gödel's Completeness Theorem

Marco Caminati (2011)

Formalized Mathematics

Fifth of a series of articles laying down the bases for classical first order model theory. This paper presents multiple themes: first it introduces sequents, rules and sets of rules for a first order language L as L-dependent types. Then defines derivability and provability according to a set of rules, and gives several technical lemmas binding all those concepts. Following that, it introduces a fixed set D of derivation rules, and proceeds to convert them to Mizar functorial cluster registrations...

Simple games in Łukasiewicz calculus and their cores

Petr Cintula, Tomáš Kroupa (2013)

Kybernetika

We propose a generalization of simple coalition games in the context of games with fuzzy coalitions. Mimicking the correspondence of simple games with non-constant monotone formulas of classical logic, we introduce simple Łukasiewicz games using monotone formulas of Łukasiewicz logic, one of the most prominent fuzzy logics. We study the core solution on the class of simple Łukasiewicz games and show that cores of such games are determined by finitely-many linear constraints only. The non-emptiness...

S-implications and R -implications on a finite chain

Margarita Mas, Miquel Monserrat, Joan Torrens (2004)

Kybernetika

This paper is devoted to the study of two kinds of implications on a finite chain L : S -implications and R -implications. A characterization of each kind of these operators is given and a lot of different implications on L are obtained, not only from smooth t-norms but also from non smooth ones. Some additional properties on these implications are studied specially in the smooth case. Finally, a class of non smooth t-norms including the nilpotent minimum is characterized. Any t-norm in this class...

Smooth and sharp thresholds for random k -XOR-CNF satisfiability

Nadia Creignou, Hervé Daudé (2003)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The aim of this paper is to study the threshold behavior for the satisfiability property of a random k -XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with k variables per equation. For k 3 we show the existence of a sharp threshold for the satisfiability of a random k -XOR-CNF formula, whereas there are smooth thresholds for k = 1 and k = 2 .

Currently displaying 801 – 820 of 1306