Displaying 281 – 300 of 1342

Showing per page

Decomposition into special cubes and its applications to quasi-subanalytic geometry

Krzysztof Jan Nowak (2009)

Annales Polonici Mathematici

The main purpose of this paper is to present a natural method of decomposition into special cubes and to demonstrate how it makes it possible to efficiently achieve many well-known fundamental results from quasianalytic geometry as, for instance, Gabrielov's complement theorem, o-minimality or quasianalytic cell decomposition.

Decompositions of saturated models of stable theories

M. C. Laskowski, S. Shelah (2006)

Fundamenta Mathematicae

We characterize the stable theories T for which the saturated models of T admit decompositions. In particular, we show that countable, shallow, stable theories with NDOP have this property.

Definable orthogonality classes in accessible categories are small

Joan Bagaria, Carles Casacuberta, A. R. D. Mathias, Jiří Rosický (2015)

Journal of the European Mathematical Society

We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopěnka’s principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Lévy hierarchy. For example, the statement that, for a class 𝒮 of morphisms in a locally presentable category 𝒞 of structures, the orthogonal class of objects is a small-orthogonality...

Definably complete Baire structures

Antongiulio Fornasiero, Tamara Servi (2010)

Fundamenta Mathematicae

We consider definably complete Baire expansions of ordered fields: every definable subset of the domain of the structure has a supremum and the domain cannot be written as the union of a definable increasing family of nowhere dense sets. Every expansion of the real field is definably complete and Baire, and so is every o-minimal expansion of a field. Moreover, unlike the o-minimal case, the structures considered form an axiomatizable class. In this context we prove a version of the Kuratowski-Ulam...

Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms

Marco Caminati (2011)

Formalized Mathematics

Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter....

Dense pairs of o-minimal structures

Lou van den Dries (1998)

Fundamenta Mathematicae

The structure of definable sets and maps in dense elementary pairs of o-minimal expansions of ordered abelian groups is described. It turns out that a certain notion of "small definable set" plays a special role in this description.

Currently displaying 281 – 300 of 1342