The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the set of asymptotic critical values of a function definable in an o-minimal structure is finite, even if the structure is not polynomially bounded. As a consequence, the function is a locally trivial fibration over the complement of this set.
A characterization of locally finite congruence modular varieties with the number of at most k-generated models being bounded from above by a polynomial in k is given. These are exactly the varieties polynomially equivalent to the varieties of unitary modules over a finite ring of finite representation type.
Currently displaying 1 –
8 of
8