Ideals on the real line and Ulam's problem
Given a topological space ⟨X,T⟩ ∈ M, an elementary submodel of set theory, we define to be X ∩ M with topology generated by U ∩ M:U ∈ T ∩ M. We prove that if is homeomorphic to ℝ, then . The same holds for arbitrary locally compact uncountable separable metric spaces, but is independent of ZFC if “local compactness” is omitted.
Inf-Datalog extends the usual least fixpoint semantics of Datalog with greatest fixpoint semantics: we defined inf-Datalog and characterized the expressive power of various fragments of inf-Datalog in [16]. In the present paper, we study the complexity of query evaluation on finite models for (various fragments of) inf-Datalog. We deduce a unified and elementary proof that global model-checking (i.e. computing all nodes satisfying a formula in a given structure) has 1. quadratic data complexity...
Inf-Datalog extends the usual least fixpoint semantics of Datalog with greatest fixpoint semantics: we defined inf-Datalog and characterized the expressive power of various fragments of inf-Datalog in [CITE]. In the present paper, we study the complexity of query evaluation on finite models for (various fragments of) inf-Datalog. We deduce a unified and elementary proof that global model-checking (i.e. computing all nodes satisfying a formula in a given structure) has 1. quadratic data complexity...
We present an abstract equational framework for the specification of systems having both observational and computational features. Our approach is based on a clear separation between the two categories of features, and uses algebra, respectively coalgebra to formalise them. This yields a coalgebraically-defined notion of observational indistinguishability, as well as an algebraically-defined notion of reachability under computations. The relationship between the computations yielding new system...