Displaying 401 – 420 of 1342

Showing per page

Herbrand consistency and bounded arithmetic

Zofia Adamowicz (2002)

Fundamenta Mathematicae

We prove that the Gödel incompleteness theorem holds for a weak arithmetic Tₘ = IΔ₀ + Ωₘ, for m ≥ 2, in the form Tₘ ⊬ HCons(Tₘ), where HCons(Tₘ) is an arithmetic formula expressing the consistency of Tₘ with respect to the Herbrand notion of provability. Moreover, we prove T H C o n s I ( T ) , where H C o n s I is HCons relativised to the definable cut Iₘ of (m-2)-times iterated logarithms. The proof is model-theoretic. We also prove a certain non-conservation result for Tₘ.

Hierarchies and reducibilities on regular languages related to modulo counting

Victor L. Selivanov (2009)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We discuss some known and introduce some new hierarchies and reducibilities on regular languages, with the emphasis on the quantifier-alternation and difference hierarchies of the quasi-aperiodic languages. The non-collapse of these hierarchies and decidability of some levels are established. Complete sets in the levels of the hierarchies under the polylogtime and some quantifier-free reducibilities are found. Some facts about the corresponding degree structures are established. As an application,...

Hierarchies and reducibilities on regular languages related to modulo counting

Victor L. Selivanov (2008)

RAIRO - Theoretical Informatics and Applications

We discuss some known and introduce some new hierarchies and reducibilities on regular languages, with the emphasis on the quantifier-alternation and difference hierarchies of the quasi-aperiodic languages. The non-collapse of these hierarchies and decidability of some levels are established. Complete sets in the levels of the hierarchies under the polylogtime and some quantifier-free reducibilities are found. Some facts about the corresponding degree structures are established. As an application, we...

Hyperidentities in associative graph algebras

Tiang Poomsa-ard (2000)

Discussiones Mathematicae - General Algebra and Applications

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the correspondinggraph algebra A(G) satisfies s ≈ t. A graph G is called associative if the corresponding graph algebra A(G) satisfies the equation (xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ is called a hyperidentity of an algebra A̲ if whenever the operation symbols occurring in s and t are replaced...

Hypersatisfaction of formulas in agebraic systems

Klaus Denecke, Dara Phusanga (2009)

Discussiones Mathematicae - General Algebra and Applications

In [2] the theory of hyperidentities and solid varieties was extended to algebraic systems and solid model classes of algebraic systems. The disadvantage of this approach is that it needs the concept of a formula system. In this paper we present a different approach which is based on the concept of a relational clone. The main result is a characterization of solid model classes of algebraic systems. The results will be applied to study the properties of the monoid of all hypersubstitutions of an...

Currently displaying 401 – 420 of 1342