On the Leibniz-Mycielski axiom in set theory
Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that satisfies φ(x) ∧¬ φ(y). We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows: 1. In the presence of ZF, the following are equivalent: (a) LM. (b)...