Displaying 601 – 620 of 849

Showing per page

The triangles method to build X -trees from incomplete distance matrices

Alain Guénoche, Bruno Leclerc (2001)

RAIRO - Operations Research - Recherche Opérationnelle

A method to infer X -trees (valued trees having X as set of leaves) from incomplete distance arrays (where some entries are uncertain or unknown) is described. It allows us to build an unrooted tree using only 2 n -3 distance values between the n elements of X , if they fulfill some explicit conditions. This construction is based on the mapping between X -tree and a weighted generalized 2-tree spanning X .

The triangles method to build X-trees from incomplete distance matrices

Alain Guénoche, Bruno Leclerc (2010)

RAIRO - Operations Research

A method to infer X-trees (valued trees having X as set of leaves) from incomplete distance arrays (where some entries are uncertain or unknown) is described. It allows us to build an unrooted tree using only 2n-3 distance values between the n elements of X, if they fulfill some explicit conditions. This construction is based on the mapping between X-tree and a weighted generalized 2-tree spanning X.

The Turán Number of the Graph 2P5

Halina Bielak, Sebastian Kieliszek (2016)

Discussiones Mathematicae Graph Theory

We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.

The Turàn number of the graph 3P4

Halina Bielak, Sebastian Kieliszek (2014)

Annales UMCS, Mathematica

Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)

The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives

Michel Las Vergnas (1999)

Annales de l'institut Fourier

We study the basic algebraic properties of a 3-variable Tutte polynomial the author has associated with a morphism of matroids, more precisely with a matroid strong map, or matroid perspective in the present paper, or, equivalently by the Factorization Theorem, with a matroid together with a distinguished subset of elements. Most algebraic properties of the usual 2-variable Tutte polynomial of a matroid generalize to the 3-variable polynomial. Among specific properties we show that the 3-variable...

The two-parameter class of Schröder inversions

J. Schröder (2013)

Commentationes Mathematicae Universitatis Carolinae

Infinite lower triangular matrices of generalized Schröder numbers are used to construct a two-parameter class of invertible sequence transformations. Their inverses are given by triangular matrices of coordination numbers. The two-parameter class of Schröder transformations is merged into a one-parameter class of stretched Riordan arrays, the left-inverses of which consist of matrices of crystal ball numbers. Schröder and inverse Schröder transforms of important sequences are calculated.

The upper domination Ramsey number u(4,4)

Tomasz Dzido, Renata Zakrzewska (2006)

Discussiones Mathematicae Graph Theory

The upper domination Ramsey number u(m,n) is the smallest integer p such that every 2-coloring of the edges of Kₚ with color red and blue, Γ(B) ≥ m or Γ(R) ≥ n, where B and R is the subgraph of Kₚ induced by blue and red edges, respectively; Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. In this paper, we show that u(4,4) ≤ 15.

Currently displaying 601 – 620 of 849