The edge-count criterion for graphic lists.
The irregularity of a graph is defined as the sum of imbalances over all edges , where denotes the degree of the vertex in . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with vertices and pendant vertices (), and characterize the corresponding extremal graphs.
The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned...
A nonincreasing sequence of nonnegative integers is a graphic sequence if it is realizable by a simple graph on vertices. In this case, is referred to as a realization of . Given two graphs and , A. Busch et al. (2014) introduced the potential-Ramsey number of and , denoted by , as the smallest nonnegative integer such that for every -term graphic sequence , there is a realization of with or with , where is the complement of . For and , let be the graph obtained...
A degree monotone path in a graph G is a path P such that the sequence of degrees of the vertices in the order in which they appear on P is monotonic. The length (number of vertices) of the longest degree monotone path in G is denoted by mp(G). This parameter, inspired by the well-known Erdős- Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter mp(G). We call G saturated if, for every edge e added to G, mp(G + e) > mp(G),...
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having a distinguished or root vertex, labeled 0. The hierarchical product G2 ⊓ G1 of G2 and G1 is a graph with vertex set V2 × V1. Two vertices y2y1 and x2x1 are adjacent if and only if y1x1 ∈ E1 and y2 = x2; or y2x2 ∈ E2 and y1 = x1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb indices of this new operation of graphs are computed. As an application, these topological indices for a class of alkanes are computed. ACM Computing...
A graph is called -free if contains no induced subgraph isomorphic to any graph , . We define In this paper, we prove that (1) if is a connected -free graph of order and , then is traceable, (2) if is a 2-connected -free graph of order and for any two distinct pairs of non-adjacent vertices , of , then is traceable, i.e., has a Hamilton path, where is a graph obtained by joining a pair of non-adjacent vertices in a .