Techniques for the refinement of orthogonal graph drawings.
Guy and Harary (1967) have shown that, for , the graph is homeomorphic to the Möbius ladder , so that its crossing number is one; it is well known that is planar. Exoo, Harary and Kabell (1981) have shown hat the crossing number of is three, for Fiorini (1986) and Richter and Salazar (2002) have shown that has crossing number two and that has crossing number , provided . We extend this result by showing that also has crossing number for all .
In this article we determine the crossing numbers of the Cartesian products of given three graphs on five vertices with paths.
Kulli and Muddebihal [V.R. Kulli, M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97] gave the characterization of all pairs of graphs which join product is planar graph. The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. There are only few results concerning crossing numbers of graphs obtained as join product of two graphs. In the paper, the exact values of crossing numbers...
There are several known exact results on the crossing numbers of Cartesian products of paths, cycles or stars with "small" graphs. Let H be the 5-vertex graph defined from K₅ by removing three edges incident with a common vertex. In this paper, we extend the earlier results to the Cartesian products of H × Pₙ and H × Cₙ, showing that in the general case the corresponding crossing numbers are 3n-1, and 3n for even n or 3n+1 if n is odd.
The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. For the path Pn of length n, the crossing numbers of Cartesian products G⃞Pn for all connected graphs G on five vertices are also known. In this paper, the crossing numbers of Cartesian products G⃞Pn for graphs G of order six are studied. Let H denote the unique tree of order six with two vertices of degree three. The main contribution is that the crossing number of the Cartesian...
The end compactification |Γ| of a locally finite graph Γis the union of the graph and its ends, endowed with a suitable topology. We show that π₁(|Γ|) embeds into a nonstandard free group with hyperfinitely many generators, i.e. an ultraproduct of finitely generated free groups, and that the embedding we construct factors through an embedding into an inverse limit of free groups. We also show how to recover the standard description of π₁(|Γ|) given by Diestel and Sprüssel (2011). Finally, we give...