Parity of numbers of crossings for complete -partite graphs
A linear forest is a forest in which every component is a path. It is known that the set of vertices V(G) of any outerplanar graph G can be partitioned into two disjoint subsets V₁,V₂ such that induced subgraphs ⟨V₁⟩ and ⟨V₂⟩ are linear forests (we say G has an (LF, LF)-partition). In this paper, we present an extension of the above result to the class of planar graphs with a given number of internal vertices (i.e., vertices that do not belong to the external face at a certain fixed embedding of...
A path-neighborhood graph is a connected graph in which every neighborhood induces a path. In the main results the 3-sun-free path-neighborhood graphs are characterized. The 3-sun is obtained from a 6-cycle by adding three chords between the three pairs of vertices at distance 2. A Pk-graph is a path-neighborhood graph in which every neighborhood is a Pk, where Pk is the path on k vertices. The Pk-graphs are characterized for k ≤ 4.
The existence of paths of low degree sum of their vertices in planar graphs is investigated. The main results of the paper are: 1. Every 3-connected simple planar graph G that contains a k-path, a path on k vertices, also contains a k-path P such that for its weight (the sum of degrees of its vertices) in G it holds 2. Every plane triangulation T that contains a k-path also contains a k-path P such that for its weight in T it holds 3. Let G be a 3-connected simple planar graph of circumference...
In this paper we prove that every planar graph without 4, 5 and 8-cycles is 3-colorable.
The aim of this paper is to characterize the patterns of successive distances of leaves in plane trivalent trees, and give a very short characterization of their parity pattern. Besides, we count how many trees satisfy some given sequences of patterns.