Page 1

Displaying 1 – 17 of 17

Showing per page

Light classes of generalized stars in polyhedral maps on surfaces

Stanislav Jendrol', Heinz-Jürgen Voss (2004)

Discussiones Mathematicae Graph Theory

A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. S i denotes a generalized 3-star, all three maximal paths starting in Z have exactly i+1 vertices (including Z). Let be a surface of Euler characteristic χ() ≤ 0, and m():= ⎣(5 + √49-24χ( ))/2⎦. We prove: (1) Let k ≥ 1, d ≥ m() be integers. Each polyhedral map G on with a k-path (on k vertices) contains a k-path of maximum degree ≤ d in G or a generalized s-star T, s ≤ m(), on d + 2- m() vertices...

Light edges in 1-planar graphs with prescribed minimum degree

Dávid Hudák, Peter Šugerek (2012)

Discussiones Mathematicae Graph Theory

A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of type (4, ≤ 13) or (5, ≤ 9) or (6, ≤ 8) or (7,7). We also show that for δ ≥ 5 these bounds are best possible and that the list of edges is minimal (in the sense that, for each of the considered edge types there are 1-planar graphs whose set of types of edges contains just the...

Light Graphs In Planar Graphs Of Large Girth

Peter Hudák, Mária Maceková, Tomáš Madaras, Pavol Široczki (2016)

Discussiones Mathematicae Graph Theory

A graph H is defined to be light in a graph family 𝒢 if there exist finite numbers φ(H, 𝒢) and w(H, 𝒢) such that each G ∈ 𝒢 which contains H as a subgraph, also contains its isomorphic copy K with ΔG(K) ≤ φ(H, 𝒢) and ∑x∈V(K) degG(x) ≤ w(H, 𝒢). In this paper, we investigate light graphs in families of plane graphs of minimum degree 2 with prescribed girth and no adjacent 2-vertices, specifying several necessary conditions for their lightness and providing sharp bounds on φ and w for light K1,3...

Light paths with an odd number of vertices in polyhedral maps

Stanislav Jendroľ, Heinz-Jürgen Voss (2000)

Czechoslovak Mathematical Journal

Let P k be a path on k vertices. In an earlier paper we have proved that each polyhedral map G on any compact 2 -manifold 𝕄 with Euler characteristic χ ( 𝕄 ) 0 contains a path P k such that each vertex of this path has, in G , degree k 5 + 49 - 24 χ ( 𝕄 ) 2 . Moreover, this bound is attained for k = 1 or k 2 , k even. In this paper we prove that for each odd k 4 3 5 + 49 - 24 χ ( 𝕄 ) 2 + 1 , this bound is the best possible on infinitely many compact 2 -manifolds, but on infinitely many other compact 2 -manifolds the upper bound can be lowered to ( k - 1 3 ) 5 + 49 - 24 χ ( 𝕄 ) 2 .

Link homotopy invariants of graphs in R3.

Kouki Taniyama (1994)

Revista Matemática de la Universidad Complutense de Madrid

In this paper we define a link homotopy invariant of spatial graphs based on the second degree coefficient of the Conway polynomial of a knot.

Looseness and Independence Number of Triangulations on Closed Surfaces

Atsuhiro Nakamoto, Seiya Negami, Kyoji Ohba, Yusuke Suzuki (2016)

Discussiones Mathematicae Graph Theory

The looseness of a triangulation G on a closed surface F2, denoted by ξ (G), is defined as the minimum number k such that for any surjection c : V (G) → {1, 2, . . . , k + 3}, there is a face uvw of G with c(u), c(v) and c(w) all distinct. We shall bound ξ (G) for triangulations G on closed surfaces by the independence number of G denoted by α(G). In particular, for a triangulation G on the sphere, we have [...] and this bound is sharp. For a triangulation G on a non-spherical surface F2, we have...

Currently displaying 1 – 17 of 17

Page 1