Balanced aspect ratio trees and their use for drawing large graphs.
Page 1
Duncan, Christian A., Goodrich, Michael T., Kobourov, Stephen G. (2000)
Journal of Graph Algorithms and Applications
L.J. Billera, Katherine E. Magurn (1987)
Discrete & computational geometry
Sato, Iwao (2009)
The Electronic Journal of Combinatorics [electronic only]
Slavik V. Jablan, Ljiljana M. Radović, Radmila Sazdanović (2005)
Kragujevac Journal of Mathematics
Bonichon, Nicolas, Bousquet-Mélou, Mireille, Fusy, Éric (2009)
Séminaire Lotharingien de Combinatoire [electronic only]
William T. Tutte (1999)
Annales de l'institut Fourier
A numerical function of bicubic planar maps found by the author and colleagues is a special case of a polynomial due to François Jaeger.
Mike J. Grannell, Terry S. Griggs, Martin Knor (2008)
Commentationes Mathematicae Universitatis Carolinae
Using results of Altshuler and Negami, we present a classification of biembeddings of symmetric configurations of triples in the torus or Klein bottle. We also give an alternative proof of the structure of 3-homogeneous Latin trades.
Jeremy T. Tyson (2005)
Fundamenta Mathematicae
We study the bi-Lipschitz embedding problem for metric compacta hyperspaces. We observe that the compacta hyperspace K(X) of any separable, uniformly disconnected metric space X admits a bi-Lipschitz embedding in ℓ². If X is a countable compact metric space containing at most n nonisolated points, there is a Lipschitz embedding of K(X) in ; in the presence of an additional convergence condition, this embedding may be chosen to be bi-Lipschitz. By way of contrast, the hyperspace K([0,1]) of the...
D'Azevedo, António Breda, Duarte, Rui (2007)
The Electronic Journal of Combinatorics [electronic only]
Pach, János, Pálvölgyi, Dömötör (2006)
The Electronic Journal of Combinatorics [electronic only]
Barát, János, Matoušek, Jirí, Wood, David R. (2006)
The Electronic Journal of Combinatorics [electronic only]
Biedl, T., Shermer, T., Whitesides, S., Wismath, S. (1999)
Journal of Graph Algorithms and Applications
W.T. Tutte (1977)
Aequationes mathematicae
Page 1