Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Connected resolvability of graphs

Varaporn Saenpholphat, Ping Zhang (2003)

Czechoslovak Mathematical Journal

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) , where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W . A resolving set for G containing a minimum number of vertices is a basis for G . The dimension dim ( G ) is the number of vertices in a basis for G . A resolving set W of G is connected if the subgraph...

Connected resolving decompositions in graphs

Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

For an ordered k -decomposition 𝒟 = { G 1 , G 2 , ... , G k } of a connected graph G and an edge e of G , the 𝒟 -code of e is the k -tuple c 𝒟 ( e ) = ( d ( e , G 1 ) , d ( e , G 2 ...

Cycle and path embedding on 5-ary N-cubes

Tsong-Jie Lin, Sun-Yuan Hsieh, Hui-Ling Huang (2009)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We study two topological properties of the 5-ary n -cube Q n 5 . Given two arbitrary distinct nodes x and y in Q n 5 , we prove that there exists an x - y path of every length ranging from 2 n to 5 n - 1 , where n 2 . Based on this result, we prove that Q n 5 is 5-edge-pancyclic by showing that every edge in Q n 5 lies on a cycle of every length ranging from 5 to 5 n .

Cycle and Path Embedding on 5-ary N-cubes

Tsong-Jie Lin, Sun-Yuan Hsieh, Hui-Ling Huang (2008)

RAIRO - Theoretical Informatics and Applications

We study two topological properties of the 5-ary n-cube Q n 5 . Given two arbitrary distinct nodes x and y in Q n 5 , we prove that there exists an x-y path of every length ranging from 2n to 5n - 1, where n ≥ 2. Based on this result, we prove that Q n 5 is 5-edge-pancyclic by showing that every edge in Q n 5 lies on a cycle of every length ranging from 5 to 5n.

Currently displaying 21 – 26 of 26

Previous Page 2