Page 1

Displaying 1 – 6 of 6

Showing per page

n-ary transit functions in graphs

Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi (2010)

Discussiones Mathematicae Graph Theory

n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.

Nearly antipodal chromatic number a c ' ( P n ) of the path P n

Srinivasa Rao Kola, Pratima Panigrahi (2009)

Mathematica Bohemica

Chartrand et al. (2004) have given an upper bound for the nearly antipodal chromatic number a c ' ( P n ) as n - 2 2 + 2 for n 9 and have found the exact value of a c ' ( P n ) for n = 5 , 6 , 7 , 8 . Here we determine the exact values of a c ' ( P n ) for n 8 . They are 2 p 2 - 6 p + 8 for n = 2 p and 2 p 2 - 4 p + 6 for n = 2 p + 1 . The exact value of the radio antipodal number a c ( P n ) for the path P n of order n has been determined by Khennoufa and Togni in 2005 as 2 p 2 - 2 p + 3 for n = 2 p + 1 and 2 p 2 - 4 p + 5 for n = 2 p . Although the value of a c ( P n ) determined there is correct, we found a mistake in the proof of the lower bound when n = 2 p (Theorem 6 ). However,...

New proof of a characterization of geodetic graphs

Ladislav Nebeský (2002)

Czechoslovak Mathematical Journal

In [3], the present author used a binary operation as a tool for characterizing geodetic graphs. In this paper a new proof of the main result of the paper cited above is presented. The new proof is shorter and simpler.

Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants

Kinkar Ch. Das, Yujun Yang, Kexiang Xu (2016)

Discussiones Mathematicae Graph Theory

Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.

Note on the relation between radius and diameter of a graph

Ferdinand Gliviak, Peter Kyš (1995)

Mathematica Bohemica

The known relation between the standard radius and diameter holds for graphs, but not for digraphs. We show that no upper estimation is possible for digraphs. We also give some remarks on distances, which are either metric or non-metric.

Currently displaying 1 – 6 of 6

Page 1