The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.
Chartrand et al. (2004) have given an upper bound for the nearly antipodal chromatic number as for and have found the exact value of for . Here we determine the exact values of for . They are for and for . The exact value of the radio antipodal number for the path of order has been determined by Khennoufa and Togni in 2005 as for and for . Although the value of determined there is correct, we found a mistake in the proof of the lower bound when (Theorem ). However,...
In [3], the present author used a binary operation as a tool for characterizing geodetic graphs. In this paper a new proof of the main result of the paper cited above is presented. The new proof is shorter and simpler.
Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.
The known relation between the standard radius and diameter holds for graphs, but not for digraphs. We show that no upper estimation is possible for digraphs. We also give some remarks on distances, which are either metric or non-metric.
Currently displaying 1 –
6 of
6