Page 1 Next

Displaying 1 – 20 of 26

Showing per page

Centers of n-fold tensor products of graphs

Sarah Bendall, Richard Hammack (2004)

Discussiones Mathematicae Graph Theory

Formulas for vertex eccentricity and radius for the n-fold tensor product G = i = 1 G i of n arbitrary simple graphs G i are derived. The center of G is characterized as the union of n+1 vertex sets of form V₁×V₂×...×Vₙ, with V i V ( G i ) .

Characterization of n -vertex graphs with metric dimension n - 3

Mohsen Jannesari, Behnaz Omoomi (2014)

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , ... , w k } of vertices and a vertex v in a connected graph G , the ordered k -vector r ( v | W ) : = ( d ( v , w 1 ) , d ( v , w 2 ) , ... , d ( v , w k ) ) is called the metric representation of v with respect to W , where d ( x , y ) is the distance between vertices x and y . A set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W . The minimum cardinality of a resolving set for G is its metric dimension. In this paper, we characterize all graphs of order n with metric dimension n - 3 .

Characterization Of Super-Radial Graphs

K.M. Kathiresan, G. Marimuthu, C. Parameswaran (2014)

Discussiones Mathematicae Graph Theory

In a graph G, the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius, r(G), of the graph and the maximum eccentricity is called the diameter, d(G), of the graph. The super-radial graph R*(G) based on G has the vertex set as in G and two vertices u and v are adjacent in R*(G) if the distance between them in G is greater than...

Characterizing the interval function of a connected graph

Ladislav Nebeský (1998)

Mathematica Bohemica

As was shown in the book of Mulder [4], the interval function is an important tool for studying metric properties of connected graphs. An axiomatic characterization of the interval function of a connected graph was given by the present author in [5]. (Using the terminology of Bandelt, van de Vel and Verheul [1] and Bandelt and Chepoi [2], we may say that [5] gave a necessary and sufficient condition for a finite geometric interval space to be graphic). In the present paper, the result given in [5]...

Characterizing which Powers of Hypercubes and Folded Hyper- cubes Are Divisor Graphs

Eman A. AbuHijleh, Omar A. AbuGhneim, Hasan Al-Ezeh (2015)

Discussiones Mathematicae Graph Theory

In this paper, we show that Qkn is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Qkn is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQn is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQn is not a divisor graph. For n ≥ 5, we show that (FQn)k is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1.

Cheeger inequalities for unbounded graph Laplacians

Frank Bauer, Matthias Keller, Radosław K. Wojciechowski (2015)

Journal of the European Mathematical Society

We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.

Circular distance in directed graphs

Bohdan Zelinka (1997)

Mathematica Bohemica

Circular distance d ( x , y ) between two vertices x , y of a strongly connected directed graph G is the sum d ( x , y ) + d ( y , x ) , where d is the usual distance in digraphs. Its basic properties are studied.

Classifying trees with edge-deleted central appendage number 2

Shubhangi Stalder, Linda Eroh, John Koker, Hosien S. Moghadam, Steven J. Winters (2009)

Mathematica Bohemica

The eccentricity of a vertex v of a connected graph G is the distance from v to a vertex farthest from v in G . The center of G is the subgraph of G induced by the vertices having minimum eccentricity. For a vertex v in a 2-edge-connected graph G , the edge-deleted eccentricity of v is defined to be the maximum eccentricity of v in G - e over all edges e of G . The edge-deleted center of G is the subgraph induced by those vertices of G having minimum edge-deleted eccentricity. The edge-deleted central...

Closed Formulae for the Strong Metric Dimension of Lexicographi

Dorota Kuziak, Ismael G. Yero, Juan A. Rodríguez-Velázquez (2016)

Discussiones Mathematicae Graph Theory

Given a connected graph G, a vertex w ∈ V (G) strongly resolves two vertices u, v ∈ V (G) if there exists some shortest u − w path containing v or some shortest v − w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension...

Closed k-stop distance in graphs

Grady Bullington, Linda Eroh, Ralucca Gera, Steven J. Winters (2011)

Discussiones Mathematicae Graph Theory

The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices = x₁, x₂, ...,xₖ in a simple graph G, the closed k-stop-distance of set is defined to be d ( ) = m i n Θ ( ) ( d ( Θ ( x ) , Θ ( x ) ) + d ( Θ ( x ) , Θ ( x ) ) + . . . + d ( Θ ( x ) , Θ ( x ) ) ) , where () is the set of all permutations from...

Comparison of Metric Spectral Gaps

Assaf Naor (2014)

Analysis and Geometry in Metric Spaces

Let A = (aij) ∊ Mn(ℝ) be an n by n symmetric stochastic matrix. For p ∊ [1, ∞) and a metric space (X, dX), let γ(A, dpx) be the infimum over those γ ∊ (0,∞] for which every x1, . . . , xn ∊ X satisfy [...] Thus γ (A, dpx) measures the magnitude of the nonlinear spectral gap of the matrix A with respect to the kernel dpX : X × X →[0,∞). We study pairs of metric spaces (X, dX) and (Y, dY ) for which there exists Ψ: (0,∞)→(0,∞) such that γ (A, dpX) ≤Ψ (A, dpY ) for every symmetric stochastic A ∊ Mn(ℝ)...

Computing the Metric Dimension of a Graph from Primary Subgraphs

Dorota Kuziak, Juan A. Rodríguez-Velázquez, Ismael G. Yero (2017)

Discussiones Mathematicae Graph Theory

Let G be a connected graph. Given an ordered set W = {w1, . . . , wk} ⊆ V (G) and a vertex u ∈ V (G), the representation of u with respect to W is the ordered k-tuple (d(u, w1), d(u, w2), . . . , d(u, wk)), where d(u, wi) denotes the distance between u and wi. The set W is a metric generator for G if every two different vertices of G have distinct representations. A minimum cardinality metric generator is called a metric basis of G and its cardinality is called the metric dimension of G. It is well...

Connected partition dimensions of graphs

Varaporn Saenpholphat, Ping Zhang (2002)

Discussiones Mathematicae Graph Theory

For a vertex v of a connected graph G and a subset S of V(G), the distance between v and S is d(v,S) = mind(v,x)|x ∈ S. For an ordered k-partition Π = S₁,S₂,...,Sₖ of V(G), the representation of v with respect to Π is the k-vector r(v|Π) = (d(v,S₁), d(v,S₂),..., d(v,Sₖ)). The k-partition Π is a resolving partition if the k-vectors r(v|Π), v ∈ V(G), are distinct. The minimum k for which there is a resolving k-partition of V(G) is the partition dimension pd(G) of G. A resolving partition Π = S₁,S₂,...,Sₖ...

Currently displaying 1 – 20 of 26

Page 1 Next