Improved upper bounds for nearly antipodal chromatic number of paths
For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that for every positive integer n, where ac’(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that if n is even positive integer and n ≥ 10, and if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.