Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Asymptotic spectral distributions of distance-k graphs of Cartesian product graphs

Yuji Hibino, Hun Hee Lee, Nobuaki Obata (2013)

Colloquium Mathematicae

Let G be a finite connected graph on two or more vertices, and G [ N , k ] the distance-k graph of the N-fold Cartesian power of G. For a fixed k ≥ 1, we obtain explicitly the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of G [ N , k ] . The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.

Currently displaying 41 – 43 of 43

Previous Page 3