Complete and almost complete minors in double-critical 8-chromatic graphs.
A β-perfect graph is a simple graph G such that χ(G') = β(G') for every induced subgraph G' of G, where χ(G') is the chromatic number of G', and β(G') is defined as the maximum over all induced subgraphs H of G' of the minimum vertex degree in H plus 1 (i.e., δ(H)+1). The vertices of a β-perfect graph G can be coloured with χ(G) colours in polynomial time (greedily). The main purpose of this paper is to give necessary and sufficient conditions, in terms of forbidden induced subgraphs,...
A constrained colouring or, more specifically, an (α, β)-colouring of a hypergraph H, is an assignment of colours to its vertices such that no edge of H contains less than α or more than β vertices with different colours. This notion, introduced by Bujtás and Tuza, generalises both classical hypergraph colourings and more general Voloshin colourings of hypergraphs. In fact, for r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings while an important instance of Voloshin colourings...
The -core of a graph , , is the maximal induced subgraph such that , if it exists. For , the -shell of a graph is the subgraph of induced by the edges contained in the -core and not contained in the -core. The core number of a vertex is the largest value for such that , and the maximum core number of a graph, , is the maximum of the core numbers of the vertices of . A graph is -monocore if . This paper discusses some basic results on the structure of -cores and -shells....
This paper gives a structure theorem for the class of countable 1-transitive coloured linear orderings for a countably infinite colour set, concluding the work begun in [1]. There we gave a complete classification of these orders for finite colour sets, of which there are ℵ₁. For infinite colour sets, the details are considerably more complicated, but many features from [1] occur here too, in more marked form, principally the use (now essential it seems) of coding trees, as a means of describing...
We prove that for any , there exists an infinite family of graphs such that for all and for all . These counterexamples to Hedetniemi’s conjecture show that the Boolean lattice of exponential graphs with as a base is infinite for .
Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition V₁,V₂,...,Vₙ of V(G) such that for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if and are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ 1,2,...,n.
Snarks are bridgeless cubic graphs with chromatic index χ' = 4. A snark G is called critical if χ'(G-{v,w}) = 3, for any two adjacent vertices v and w. For any k ≥ 2 we construct cyclically 5-edge connected critical snarks G having an independent set I of at least k vertices such that χ'(G-I) = 4. For k = 2 this solves a problem of Nedela and Skoviera [6].