Displaying 641 – 660 of 719

Showing per page

The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs

Ladislav Nebeský (2006)

Czechoslovak Mathematical Journal

If G is a connected graph of order n 1 , then by a hamiltonian coloring of G we mean a mapping c of V ( G ) into the set of all positive integers such that | c ( x ) - c ( y ) | n - 1 - D G ( x , y ) (where D G ( x , y ) denotes the length of a longest x - y path in G ) for all distinct x , y V ( G ) . Let G be a connected graph. By the hamiltonian chromatic number of G we mean min ( max ( c ( z ) ; z V ( G ) ) ) , where the minimum is taken over all hamiltonian colorings c of G . The main result of this paper can be formulated as follows: Let G be a connected graph of order n 3 . Assume that there exists a subgraph...

The Incidence Chromatic Number of Toroidal Grids

Éric Sopena, Jiaojiao Wu (2013)

Discussiones Mathematicae Graph Theory

An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid Tm,n = Cm2Cn equals 5 when...

The k -metric colorings of a graph

Futaba Fujie-Okamoto, Willem Renzema, Ping Zhang (2012)

Mathematica Bohemica

For a nontrivial connected graph G of order n , the detour distance D ( u , v ) between two vertices u and v in G is the length of a longest u - v path in G . Detour distance is a metric on the vertex set of G . For each integer k with 1 k n - 1 , a coloring c : V ( G ) is a k -metric coloring of G if | c ( u ) - c ( v ) | + D ( u , v ) k + 1 for every two distinct vertices u and v of G . The value χ m k ( c ) of a k -metric coloring c is the maximum color assigned by c to a vertex of G and the k -metric chromatic number χ m k ( G ) of G is the minimum value of a k -metric coloring of G . For every...

The k-Rainbow Bondage Number of a Digraph

Jafar Amjadi, Negar Mohammadi, Seyed Mahmoud Sheikholeslami, Lutz Volkmann (2015)

Discussiones Mathematicae Graph Theory

Let D = (V,A) be a finite and simple digraph. A k-rainbow dominating function (kRDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V with f(v) = Ø the condition ∪u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled, where N−(v) is the set of in-neighbors of v. The weight of a kRDF f is the value w(f) = ∑v∈V |f(v)|. The k-rainbow domination number of a digraph D, denoted by γrk(D), is the minimum weight of a kRDF...

The multiset chromatic number of a graph

Gary Chartrand, Futaba Okamoto, Ebrahim Salehi, Ping Zhang (2009)

Mathematica Bohemica

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k -coloring is the multiset chromatic number χ m ( G ) of G . For every graph G , χ m ( G ) is bounded above by its chromatic number χ ( G ) . The multiset chromatic number is determined for every complete multipartite graph as well as for cycles and their squares, cubes, and fourth powers. It is conjectured that for each k 3 , there exist sufficiently...

The Mycielskian of a Graph

Piotr Rudnicki, Lorna Stewart (2011)

Formalized Mathematics

Let ω(G) and χ(G) be the clique number and the chromatic number of a graph G. Mycielski [11] presented a construction that for any n creates a graph Mn which is triangle-free (ω(G) = 2) with χ(G) > n. The starting point is the complete graph of two vertices (K2). M(n+1) is obtained from Mn through the operation μ(G) called the Mycielskian of a graph G.We first define the operation μ(G) and then show that ω(μ(G)) = ω(G) and χ(μ(G)) = χ(G) + 1. This is done for arbitrary graph G, see also [10]....

The non-crossing graph.

Linial, Nathan, Saks, Michael, Statter, David (2006)

The Electronic Journal of Combinatorics [electronic only]

The NP-completeness of automorphic colorings

Giuseppe Mazzuoccolo (2010)

Discussiones Mathematicae Graph Theory

Given a graph G, an automorphic edge(vertex)-coloring of G is a proper edge(vertex)-coloring such that each automorphism of the graph preserves the coloring. The automorphic chromatic index (number) is the least integer k for which G admits an automorphic edge(vertex)-coloring with k colors. We show that it is NP-complete to determine the automorphic chromatic index and the automorphic chromatic number of an arbitrary graph.

The order of uniquely partitionable graphs

Izak Broere, Marietjie Frick, Peter Mihók (1997)

Discussiones Mathematicae Graph Theory

Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by V i has property i . If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.

The set chromatic number of a graph

Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)

Discussiones Mathematicae Graph Theory

For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs are determined...

The s-packing chromatic number of a graph

Wayne Goddard, Honghai Xu (2012)

Discussiones Mathematicae Graph Theory

Let S = (a₁, a₂, ...) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V(G) to 1,2,...,k such that vertices with color i have pairwise distance greater than a i , and the S-packing chromatic number χ S ( G ) of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper coloring (when S = (1,1,1,...)) and broadcast coloring (when S = (1,2,3,4,...)). In this paper, we consider bounds on...

The structure of plane graphs with independent crossings and its applications to coloring problems

Xin Zhang, Guizhen Liu (2013)

Open Mathematics

If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is...

Currently displaying 641 – 660 of 719