The monoid of strong endomorphisms of a graph.
Let be a finite group. The main supergraph is a graph with vertex set in which two vertices and are adjacent if and only if or . In this paper, we will show that if and only if . As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group .
Let be an ideal in a commutative Noetherian ring . Then the ideal has the strong persistence property if and only if for all , and has the symbolic strong persistence property if and only if for all , where denotes the th symbolic power of . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the...
In [Mwambene E., Multiples of left loops and vertex-transitive graphs, Cent. Eur. J. Math. 3 (2005), no. 2, 254–250] it was proved that every vertex-transitive graph is the Cayley graph of a left loop with respect to a quasi-associative Cayley set. We use this result to show that Cayley graphs of left loops with respect to such sets have some properties in common with Cayley graphs of groups which can be used to study a geometric theory for left loops in analogy to that for groups.
In this paper, by a travel groupoid is meant an ordered pair such that is a nonempty set and is a binary operation on satisfying the following two conditions for all : Let be a travel groupoid. It is easy to show that if , then if and only if . We say that is on a (finite or infinite) graph if and Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.
We introduce the notions of T-Rickart and strongly T-Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that R is right Σ-t-extending if and only if every R-module is T-Rickart. Also, every free R-module is T-Rickart if and only if , where R’ is a hereditary right R-module. Examples illustrating the results are presented.