Displaying 241 – 260 of 667

Showing per page

Graphs maximal with respect to hom-properties

Jan Kratochvíl, Peter Mihók, Gabriel Semanišin (1997)

Discussiones Mathematicae Graph Theory

For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.

Graphs with rainbow connection number two

Arnfried Kemnitz, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where n - 1 2 + 1 m n 2 - 1 . We also characterize graphs with rainbow connection number two and large clique number.

Currently displaying 241 – 260 of 667