Displaying 441 – 460 of 667

Showing per page

On the Non-(p−1)-Partite Kp-Free Graphs

Kinnari Amin, Jill Faudree, Ronald J. Gould, Elżbieta Sidorowicz (2013)

Discussiones Mathematicae Graph Theory

We say that a graph G is maximal Kp-free if G does not contain Kp but if we add any new edge e ∈ E(G) to G, then the graph G + e contains Kp. We study the minimum and maximum size of non-(p − 1)-partite maximal Kp-free graphs with n vertices. We also answer the interpolation question: for which values of n and m are there any n-vertex maximal Kp-free graphs of size m?

On the Numbers of Cut-Vertices and End-Blocks in 4-Regular Graphs

Dingguo Wang, Erfang Shan (2014)

Discussiones Mathematicae Graph Theory

A cut-vertex in a graph G is a vertex whose removal increases the number of connected components of G. An end-block of G is a block with a single cut-vertex. In this paper we establish upper bounds on the numbers of end-blocks and cut-vertices in a 4-regular graph G and claw-free 4-regular graphs. We characterize the extremal graphs achieving these bounds.

On the stability for pancyclicity

Ingo Schiermeyer (2001)

Discussiones Mathematicae Graph Theory

A property P defined on all graphs of order n is said to be k-stable if for any graph of order n that does not satisfy P, the fact that uv is not an edge of G and that G + uv satisfies P implies d G ( u ) + d G ( v ) < k . Every property is (2n-3)-stable and every k-stable property is (k+1)-stable. We denote by s(P) the smallest integer k such that P is k-stable and call it the stability of P. This number usually depends on n and is at most 2n-3. A graph of order n is said to be pancyclic if it contains cycles of all lengths...

On total restrained domination in graphs

De-xiang Ma, Xue-Gang Chen, Liang Sun (2005)

Czechoslovak Mathematical Journal

In this paper we initiate the study of total restrained domination in graphs. Let G = ( V , E ) be a graph. A total restrained dominating set is a set S V where every vertex in V - S is adjacent to a vertex in S as well as to another vertex in V - S , and every vertex in S is adjacent to another vertex in S . The total restrained domination number of G , denoted by γ r t ( G ) , is the smallest cardinality of a total restrained dominating set of G . First, some exact values and sharp bounds for γ r t ( G ) are given in Section 2. Then the Nordhaus-Gaddum-type...

On vertex stability with regard to complete bipartite subgraphs

Aneta Dudek, Andrzej Żak (2010)

Discussiones Mathematicae Graph Theory

A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of ( K m , n ; 1 ) -vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, Q ( K m , n ; 1 ) = m n + m + n and K m , n * K as well as K m + 1 , n + 1 - e are the only ( K m , n ; 1 ) -vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.

One-two descriptor of graphs

K. CH. Das, I. Gutman, D. Vukičević (2011)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

Currently displaying 441 – 460 of 667