Previous Page 3

Displaying 41 – 44 of 44

Showing per page

Extremal problems for forbidden pairs that imply hamiltonicity

Ralph Faudree, András Gyárfás (1999)

Discussiones Mathematicae Graph Theory

Let C denote the claw K 1 , 3 , N the net (a graph obtained from a K₃ by attaching a disjoint edge to each vertex of the K₃), W the wounded (a graph obtained from a K₃ by attaching an edge to one vertex and a disjoint path P₃ to a second vertex), and Z i the graph consisting of a K₃ with a path of length i attached to one vertex. For k a fixed positive integer and n a sufficiently large integer, the minimal number of edges and the smallest clique in a k-connected graph G of order n that is CY-free (does...

Extremal Unicyclic Graphs With Minimal Distance Spectral Radius

Hongyan Lu, Jing Luo, Zhongxun Zhu (2014)

Discussiones Mathematicae Graph Theory

The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.

Extreme geodesic graphs

Gary Chartrand, Ping Zhang (2002)

Czechoslovak Mathematical Journal

For two vertices u and v of a graph G , the closed interval I [ u , v ] consists of u , v , and all vertices lying in some u -- v geodesic of G , while for S V ( G ) , the set I [ S ] is the union of all sets I [ u , v ] for u , v S . A set S of vertices of G for which I [ S ] = V ( G ) is a geodetic set for G , and the minimum cardinality of a geodetic set is the geodetic number g ( G ) . A vertex v in G is an extreme vertex if the subgraph induced by its neighborhood is complete. The number of extreme vertices in G is its extreme order e x ( G ) . A graph G is an extreme geodesic...

Currently displaying 41 – 44 of 44

Previous Page 3