Displaying 621 – 640 of 669

Showing per page

Turán number of two vertex-disjoint copies of cliques

Caiyun Hu (2024)

Czechoslovak Mathematical Journal

The Turán number of a given graph H , denoted by ex ( n , H ) , is the maximum number of edges in an H -free graph on n vertices. Applying a well-known result of Hajnal and Szemerédi, we determine the Turán number ex ( n , K p K q ) of a vertex-disjoint union of cliques K p and K q for all values of n .

Turán's problem and Ramsey numbers for trees

Zhi-Hong Sun, Lin-Lin Wang, Yi-Li Wu (2015)

Colloquium Mathematicae

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V = v , v , . . . , v n - 1 , E = v v , . . . , v v n - 3 , v n - 4 v n - 2 , v n - 3 v n - 1 and E = v v , . . . , v v n - 3 , v n - 3 v n - 2 , v n - 3 v n - 1 . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r ( T , T i ) , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

Two classes of graphs related to extremal eccentricities

Ferdinand Gliviak (1997)

Mathematica Bohemica

A graph G is called an S -graph if its periphery P e r i ( G ) is equal to its center eccentric vertices C e p ( G ) . Further, a graph G is called a D -graph if P e r i ( G ) C e p ( G ) = . We describe S -graphs and D -graphs for small radius. Then, for a given graph H and natural numbers r 2 , n 2 , we construct an S -graph of radius r having n central vertices and containing H as an induced subgraph. We prove an analogous existence theorem for D -graphs, too. At the end, we give some properties of S -graphs and D -graphs.

Two operations on a graph preserving the (non)existence of 2-factors in its line graph

Mingqiang An, Hong-Jian Lai, Hao Li, Guifu Su, Runli Tian, Liming Xiong (2014)

Czechoslovak Mathematical Journal

Let G = ( V ( G ) , E ( G ) ) be a graph. Gould and Hynds (1999) showed a well-known characterization of G by its line graph L ( G ) that has a 2-factor. In this paper, by defining two operations, we present a characterization for a graph G to have a 2-factor in its line graph L ( G ) . A graph G is called N 2 -locally connected if for every vertex x V ( G ) , G [ ...

Currently displaying 621 – 640 of 669